File size: 8,565 Bytes
15acbf0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import inspect
from typing import List, Optional, Tuple, Union

import torch

from diffusers.models import UNet2DModel, VQModel
from diffusers.schedulers import DDIMScheduler
from diffusers.utils import randn_tensor
from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput
import copy

class SDMLDMPipeline(DiffusionPipeline):
    r"""
    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)

    Parameters:
        vae ([`VQModel`]):
            Vector-quantized (VQ) Model to encode and decode images to and from latent representations.
        unet ([`UNet2DModel`]): U-Net architecture to denoise the encoded image latents.
        scheduler ([`SchedulerMixin`]):
            [`DDIMScheduler`] is to be used in combination with `unet` to denoise the encoded image latents.
    """

    def __init__(self, vae: VQModel, unet: UNet2DModel, scheduler: DDIMScheduler, torch_dtype=torch.float16, resolution=512, resolution_type="city"):
        super().__init__()
        self.register_modules(vae=vae, unet=unet, scheduler=scheduler)
        self.torch_dtype = torch_dtype
        self.resolution = resolution
        self.resolution_type = resolution_type
    @torch.no_grad()
    def __call__(
        self,
        segmap = None,
        batch_size: int = 8,
        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
        eta: float = 0.0,
        num_inference_steps: int = 1000,
        output_type: Optional[str] = "pil",
        return_dict: bool = True,
        every_step_save: int = None,
        s: int = 1,
        num_evolution_per_mask = 10,
        debug = False,
        **kwargs,
    ) -> Union[Tuple, ImagePipelineOutput]:
        r"""
        Args:
            batch_size (`int`, *optional*, defaults to 1):
                Number of images to generate.
            generator (`torch.Generator`, *optional*):
                One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
                to make generation deterministic.
            num_inference_steps (`int`, *optional*, defaults to 50):
                The number of denoising steps. More denoising steps usually lead to a higher quality image at the
                expense of slower inference.
            output_type (`str`, *optional*, defaults to `"pil"`):
                The output format of the generate image. Choose between
                [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
            return_dict (`bool`, *optional*, defaults to `True`):
                Whether or not to return a [`~pipelines.ImagePipelineOutput`] instead of a plain tuple.

        Returns:
            [`~pipelines.ImagePipelineOutput`] or `tuple`: [`~pipelines.model.ImagePipelineOutput`] if `return_dict` is
            True, otherwise a `tuple. When returning a tuple, the first element is a list with the generated images.
        """
        # self.unet.config.sample_size = (64, 64) # (135,180)
        # self.unet.config.sample_size = (135,180)
        if self.resolution_type == "crack":
            self.unet.config.sample_size = (64,64)
        elif self.resolution_type == "crack_256":
            self.unet.config.sample_size = (256,256)
        else:
            sc = 1080 // self.resolution
            latent_size = (self.resolution // 4, 1440 // (sc*4))
            self.unet.config.sample_size = latent_size
        # 
        if not isinstance(self.unet.config.sample_size, tuple):
            self.unet.config.sample_size = (self.unet.config.sample_size, self.unet.config.sample_size)

        if segmap is None:
            print("Didn't inpute any segmap, use the empty as the input")
            segmap = torch.zeros(batch_size,self.unet.config.segmap_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1])
        segmap = segmap.to(self.device).type(self.torch_dtype)
        if batch_size == 1 and num_evolution_per_mask > batch_size:
            latents = randn_tensor(
                (num_evolution_per_mask, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]),
                generator=generator,
        )   
        else: 
            latents = randn_tensor(
                (batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1]),
                generator=generator,
            )
        latents = latents.to(self.device).type(self.torch_dtype)

        # scale the initial noise by the standard deviation required by the scheduler (need to check)
        latents = latents * self.scheduler.init_noise_sigma

        self.scheduler.set_timesteps(num_inference_steps=num_inference_steps)

        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())

        extra_kwargs = {}
        if accepts_eta:
            extra_kwargs["eta"] = eta

        step_latent = []
        learn_sigma = True if hasattr(self.scheduler, "variance_type") else False
        if debug:
            extra_list_list = []
            self.unet.debug=True
        for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)):
    
            latent_model_input = self.scheduler.scale_model_input(latents, t)
            # predict the noise residual
            if debug:
                output, extra_list = self.unet(latent_model_input, segmap, t)   
                noise_prediction = output.sample
                extra_list_list.append(extra_list)
            else:
                noise_prediction = self.unet(latent_model_input, segmap, t).sample
            # compute the previous noisy sample x_t -> x_t-1
            

            if learn_sigma and "learn" in self.scheduler.variance_type:
                model_pred, var_pred = torch.split(noise_prediction, latents.shape[1], dim=1)
            else:
                model_pred = noise_prediction
            if s > 1.0:
                if debug:
                    model_output_zero = self.unet(latent_model_input, torch.zeros_like(segmap), t)[0].sample
                else:
                    model_output_zero = self.unet(latent_model_input, torch.zeros_like(segmap), t).sample
                if learn_sigma and "learn" in self.scheduler.variance_type:
                    model_output_zero,_ = torch.split(model_output_zero, latents.shape[1], dim=1)
                model_pred = model_pred + s * (model_pred - model_output_zero)
                if learn_sigma and "learn" in self.scheduler.variance_type:
                    recombined = torch.cat((model_pred, var_pred), dim=1)
            # when apply different scheduler, mean only !!
            if learn_sigma and "learn" in self.scheduler.variance_type:
                latents = self.scheduler.step(recombined, t, latents, **extra_kwargs).prev_sample
            else:
                latents = self.scheduler.step(noise_prediction, t, latents, **extra_kwargs).prev_sample

            if every_step_save is not None:
                if (i+1) % every_step_save == 0:
                    step_latent.append(copy.deepcopy(latents))
            
        if debug:
            return extra_list_list[-1]

        # decode the image latents with the VAE
        if every_step_save is not None:
            image = []
            for i, l in enumerate(step_latent):
                l /= self.vae.config.scaling_factor  # (0.18215)
                #latents /= 7.706491063029163
                l = self.vae.decode(l, segmap)
                l = (l / 2 + 0.5).clamp(0, 1)
                l = l.cpu().permute(0, 2, 3, 1).numpy()
                if output_type == "pil":
                    l = self.numpy_to_pil(l)
                image.append(l)
        else:
            latents /= self.vae.config.scaling_factor#(0.18215)
            #latents /= 7.706491063029163
            # image = self.vae.decode(latents, segmap).sample
            image = self.vae.decode(latents, return_dict=False)[0]
            image = (image / 2 + 0.5).clamp(0, 1)
            image = image.cpu().permute(0, 2, 3, 1).numpy()
            if output_type == "pil":
                image = self.numpy_to_pil(image)

        if not return_dict:
            return (image,)

        return ImagePipelineOutput(images=image)