import nodes import numpy as np import torch from .libs import utils def normalize_size_base_64(w, h): short_side = min(w, h) remainder = short_side % 64 return short_side - remainder + (64 if remainder > 0 else 0) class MediaPipeFaceMeshDetector: def __init__(self, face, mouth, left_eyebrow, left_eye, left_pupil, right_eyebrow, right_eye, right_pupil, max_faces, is_segm): self.face = face self.mouth = mouth self.left_eyebrow = left_eyebrow self.left_eye = left_eye self.left_pupil = left_pupil self.right_eyebrow = right_eyebrow self.right_eye = right_eye self.right_pupil = right_pupil self.is_segm = is_segm self.max_faces = max_faces self.override_bbox_by_segm = True def detect(self, image, threshold, dilation, crop_factor, drop_size=1, crop_min_size=None, detailer_hook=None): if 'MediaPipe-FaceMeshPreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'MediaPipeFaceMeshDetector' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use MediaPipeFaceMeshDetector, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") if 'MediaPipeFaceMeshToSEGS' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/ltdrdata/ComfyUI-Impact-Pack', "To use 'MediaPipeFaceMeshDetector' node, 'Impact Pack' extension is required.") raise Exception(f"[ERROR] To use MediaPipeFaceMeshDetector, you need to install 'ComfyUI-Impact-Pack'") pre_obj = nodes.NODE_CLASS_MAPPINGS['MediaPipe-FaceMeshPreprocessor'] seg_obj = nodes.NODE_CLASS_MAPPINGS['MediaPipeFaceMeshToSEGS'] resolution = normalize_size_base_64(image.shape[2], image.shape[1]) facemesh_image = pre_obj().detect(image, self.max_faces, threshold, resolution=resolution)[0] facemesh_image = nodes.ImageScale().upscale(facemesh_image, "bilinear", image.shape[2], image.shape[1], "disabled")[0] segs = seg_obj().doit(facemesh_image, crop_factor, not self.is_segm, crop_min_size, drop_size, dilation, self.face, self.mouth, self.left_eyebrow, self.left_eye, self.left_pupil, self.right_eyebrow, self.right_eye, self.right_pupil)[0] return segs def setAux(self, x): pass class MediaPipe_FaceMesh_Preprocessor_wrapper: def __init__(self, max_faces, min_confidence, upscale_factor=1.0): self.max_faces = max_faces self.min_confidence = min_confidence self.upscale_factor = upscale_factor def apply(self, image, mask=None): if 'MediaPipe-FaceMeshPreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") if self.upscale_factor != 1.0: image = nodes.ImageScaleBy().upscale(image, 'bilinear', self.upscale_factor)[0] obj = nodes.NODE_CLASS_MAPPINGS['MediaPipe-FaceMeshPreprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.detect(image, self.max_faces, self.min_confidence, resolution=resolution)[0] class AnimeLineArt_Preprocessor_wrapper: def apply(self, image, mask=None): if 'AnimeLineArtPreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'AnimeLineArt_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use AnimeLineArt_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") obj = nodes.NODE_CLASS_MAPPINGS['AnimeLineArtPreprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.execute(image, resolution=resolution)[0] class Manga2Anime_LineArt_Preprocessor_wrapper: def apply(self, image, mask=None): if 'Manga2Anime_LineArt_Preprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'Manga2Anime_LineArt_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use Manga2Anime_LineArt_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") obj = nodes.NODE_CLASS_MAPPINGS['Manga2Anime_LineArt_Preprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.execute(image, resolution=resolution)[0] class Color_Preprocessor_wrapper: def apply(self, image, mask=None): if 'ColorPreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'Color_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use Color_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") obj = nodes.NODE_CLASS_MAPPINGS['ColorPreprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.execute(image, resolution=resolution)[0] class InpaintPreprocessor_wrapper: def apply(self, image, mask=None): if 'InpaintPreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'InpaintPreprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use InpaintPreprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") obj = nodes.NODE_CLASS_MAPPINGS['InpaintPreprocessor']() if mask is None: mask = torch.ones((image.shape[1], image.shape[2]), dtype=torch.float32, device="cpu").unsqueeze(0) return obj.preprocess(image, mask)[0] class TilePreprocessor_wrapper: def __init__(self, pyrUp_iters): self.pyrUp_iters = pyrUp_iters def apply(self, image, mask=None): if 'TilePreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'TilePreprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use TilePreprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") obj = nodes.NODE_CLASS_MAPPINGS['TilePreprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.execute(image, self.pyrUp_iters, resolution=resolution)[0] class MeshGraphormerDepthMapPreprocessorProvider_wrapper: def apply(self, image, mask=None): if 'MeshGraphormer-DepthMapPreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'MeshGraphormerDepthMapPreprocessorProvider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use MeshGraphormerDepthMapPreprocessorProvider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") obj = nodes.NODE_CLASS_MAPPINGS['MeshGraphormer-DepthMapPreprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.execute(image, resolution=resolution)[0] class LineArt_Preprocessor_wrapper: def __init__(self, coarse): self.coarse = coarse def apply(self, image, mask=None): if 'LineArtPreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'LineArt_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use LineArt_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") coarse = 'enable' if self.coarse else 'disable' obj = nodes.NODE_CLASS_MAPPINGS['LineArtPreprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.execute(image, resolution=resolution, coarse=coarse)[0] class OpenPose_Preprocessor_wrapper: def __init__(self, detect_hand, detect_body, detect_face, upscale_factor=1.0): self.detect_hand = detect_hand self.detect_body = detect_body self.detect_face = detect_face self.upscale_factor = upscale_factor def apply(self, image, mask=None): if 'OpenposePreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'OpenPose_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use OpenPose_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") detect_hand = 'enable' if self.detect_hand else 'disable' detect_body = 'enable' if self.detect_body else 'disable' detect_face = 'enable' if self.detect_face else 'disable' if self.upscale_factor != 1.0: image = nodes.ImageScaleBy().upscale(image, 'bilinear', self.upscale_factor)[0] obj = nodes.NODE_CLASS_MAPPINGS['OpenposePreprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.estimate_pose(image, detect_hand, detect_body, detect_face, resolution=resolution)['result'][0] class DWPreprocessor_wrapper: def __init__(self, detect_hand, detect_body, detect_face, upscale_factor=1.0, bbox_detector="yolox_l.onnx", pose_estimator="dw-ll_ucoco_384.onnx"): self.detect_hand = detect_hand self.detect_body = detect_body self.detect_face = detect_face self.upscale_factor = upscale_factor self.bbox_detector = bbox_detector self.pose_estimator = pose_estimator def apply(self, image, mask=None): if 'DWPreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'DWPreprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use DWPreprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") detect_hand = 'enable' if self.detect_hand else 'disable' detect_body = 'enable' if self.detect_body else 'disable' detect_face = 'enable' if self.detect_face else 'disable' if self.upscale_factor != 1.0: image = nodes.ImageScaleBy().upscale(image, 'bilinear', self.upscale_factor)[0] obj = nodes.NODE_CLASS_MAPPINGS['DWPreprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.estimate_pose(image, detect_hand, detect_body, detect_face, resolution=resolution, bbox_detector=self.bbox_detector, pose_estimator=self.pose_estimator)['result'][0] class LeReS_DepthMap_Preprocessor_wrapper: def __init__(self, rm_nearest, rm_background, boost): self.rm_nearest = rm_nearest self.rm_background = rm_background self.boost = boost def apply(self, image, mask=None): if 'LeReS-DepthMapPreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'LeReS_DepthMap_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use LeReS_DepthMap_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") boost = 'enable' if self.boost else 'disable' obj = nodes.NODE_CLASS_MAPPINGS['LeReS-DepthMapPreprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.execute(image, self.rm_nearest, self.rm_background, boost=boost, resolution=resolution)[0] class MiDaS_DepthMap_Preprocessor_wrapper: def __init__(self, a, bg_threshold): self.a = a self.bg_threshold = bg_threshold def apply(self, image, mask=None): if 'MiDaS-DepthMapPreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'MiDaS_DepthMap_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use MiDaS_DepthMap_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") obj = nodes.NODE_CLASS_MAPPINGS['MiDaS-DepthMapPreprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.execute(image, self.a, self.bg_threshold, resolution=resolution)[0] class Zoe_DepthMap_Preprocessor_wrapper: def apply(self, image, mask=None): if 'Zoe-DepthMapPreprocessor' not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', "To use 'Zoe_DepthMap_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use Zoe_DepthMap_Preprocessor_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") obj = nodes.NODE_CLASS_MAPPINGS['Zoe-DepthMapPreprocessor']() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.execute(image, resolution=resolution)[0] class HED_Preprocessor_wrapper: def __init__(self, safe, nodename): self.safe = safe self.nodename = nodename def apply(self, image, mask=None): if self.nodename not in nodes.NODE_CLASS_MAPPINGS: utils.try_install_custom_node('https://github.com/Fannovel16/comfyui_controlnet_aux', f"To use '{self.nodename}_Preprocessor_Provider' node, 'ComfyUI's ControlNet Auxiliary Preprocessors.' extension is required.") raise Exception(f"[ERROR] To use {self.nodename}_Provider, you need to install 'ComfyUI's ControlNet Auxiliary Preprocessors.'") obj = nodes.NODE_CLASS_MAPPINGS[self.nodename]() resolution = normalize_size_base_64(image.shape[2], image.shape[1]) return obj.execute(image, resolution=resolution, safe="enable" if self.safe else "disable")[0] class Canny_Preprocessor_wrapper: def __init__(self, low_threshold, high_threshold): self.low_threshold = low_threshold self.high_threshold = high_threshold def apply(self, image, mask=None): obj = nodes.NODE_CLASS_MAPPINGS['Canny']() return obj.detect_edge(image, self.low_threshold, self.high_threshold)[0] class OpenPose_Preprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return { "required": { "detect_hand": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}), "detect_body": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}), "detect_face": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}), "resolution_upscale_by": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 100, "step": 0.1}), } } RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self, detect_hand, detect_body, detect_face, resolution_upscale_by): obj = OpenPose_Preprocessor_wrapper(detect_hand, detect_body, detect_face, upscale_factor=resolution_upscale_by) return (obj, ) class DWPreprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return { "required": { "detect_hand": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}), "detect_body": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}), "detect_face": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}), "resolution_upscale_by": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 100, "step": 0.1}), "bbox_detector": ( ["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"], {"default": "yolox_l.onnx"} ), "pose_estimator": (["dw-ll_ucoco_384_bs5.torchscript.pt", "dw-ll_ucoco_384.onnx", "dw-ll_ucoco.onnx"], {"default": "dw-ll_ucoco_384_bs5.torchscript.pt"}) } } RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self, detect_hand, detect_body, detect_face, resolution_upscale_by, bbox_detector, pose_estimator): obj = DWPreprocessor_wrapper(detect_hand, detect_body, detect_face, upscale_factor=resolution_upscale_by, bbox_detector=bbox_detector, pose_estimator=pose_estimator) return (obj, ) class LeReS_DepthMap_Preprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return { "required": { "rm_nearest": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100, "step": 0.1}), "rm_background": ("FLOAT", {"default": 0.0, "min": 0.0, "max": 100, "step": 0.1}) }, "optional": { "boost": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}), } } RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self, rm_nearest, rm_background, boost=False): obj = LeReS_DepthMap_Preprocessor_wrapper(rm_nearest, rm_background, boost) return (obj, ) class MiDaS_DepthMap_Preprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return { "required": { "a": ("FLOAT", {"default": np.pi * 2.0, "min": 0.0, "max": np.pi * 5.0, "step": 0.05}), "bg_threshold": ("FLOAT", {"default": 0.1, "min": 0, "max": 1, "step": 0.05}) } } RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self, a, bg_threshold): obj = MiDaS_DepthMap_Preprocessor_wrapper(a, bg_threshold) return (obj, ) class Zoe_DepthMap_Preprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return { "required": {} } RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self): obj = Zoe_DepthMap_Preprocessor_wrapper() return (obj, ) class Canny_Preprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return { "required": { "low_threshold": ("FLOAT", {"default": 0.4, "min": 0.01, "max": 0.99, "step": 0.01}), "high_threshold": ("FLOAT", {"default": 0.8, "min": 0.01, "max": 0.99, "step": 0.01}) } } RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self, low_threshold, high_threshold): obj = Canny_Preprocessor_wrapper(low_threshold, high_threshold) return (obj, ) class HEDPreprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return { "required": { "safe": ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}) } } RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self, safe): obj = HED_Preprocessor_wrapper(safe, "HEDPreprocessor") return (obj, ) class FakeScribblePreprocessor_Provider_for_SEGS(HEDPreprocessor_Provider_for_SEGS): def doit(self, safe): obj = HED_Preprocessor_wrapper(safe, "FakeScribblePreprocessor") return (obj, ) class MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return { "required": { "max_faces": ("INT", {"default": 10, "min": 1, "max": 50, "step": 1}), "min_confidence": ("FLOAT", {"default": 0.5, "min": 0.01, "max": 1.0, "step": 0.01}), "resolution_upscale_by": ("FLOAT", {"default": 1.0, "min": 0.5, "max": 100, "step": 0.1}), } } RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self, max_faces, min_confidence, resolution_upscale_by): obj = MediaPipe_FaceMesh_Preprocessor_wrapper(max_faces, min_confidence, upscale_factor=resolution_upscale_by) return (obj, ) class MediaPipeFaceMeshDetectorProvider: @classmethod def INPUT_TYPES(s): bool_true_widget = ("BOOLEAN", {"default": True, "label_on": "enable", "label_off": "disable"}) bool_false_widget = ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}) return {"required": { "max_faces": ("INT", {"default": 10, "min": 1, "max": 50, "step": 1}), "face": bool_true_widget, "mouth": bool_false_widget, "left_eyebrow": bool_false_widget, "left_eye": bool_false_widget, "left_pupil": bool_false_widget, "right_eyebrow": bool_false_widget, "right_eye": bool_false_widget, "right_pupil": bool_false_widget, }} RETURN_TYPES = ("BBOX_DETECTOR", "SEGM_DETECTOR") FUNCTION = "doit" CATEGORY = "InspirePack/Detector" def doit(self, max_faces, face, mouth, left_eyebrow, left_eye, left_pupil, right_eyebrow, right_eye, right_pupil): bbox_detector = MediaPipeFaceMeshDetector(face, mouth, left_eyebrow, left_eye, left_pupil, right_eyebrow, right_eye, right_pupil, max_faces, is_segm=False) segm_detector = MediaPipeFaceMeshDetector(face, mouth, left_eyebrow, left_eye, left_pupil, right_eyebrow, right_eye, right_pupil, max_faces, is_segm=True) return (bbox_detector, segm_detector) class AnimeLineArt_Preprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return {"required": {}} RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self): obj = AnimeLineArt_Preprocessor_wrapper() return (obj, ) class Manga2Anime_LineArt_Preprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return {"required": {}} RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self): obj = Manga2Anime_LineArt_Preprocessor_wrapper() return (obj, ) class LineArt_Preprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return {"required": { "coarse": ("BOOLEAN", {"default": False, "label_on": "enable", "label_off": "disable"}), }} RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self, coarse): obj = LineArt_Preprocessor_wrapper(coarse) return (obj, ) class Color_Preprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return {"required": {}} RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self): obj = Color_Preprocessor_wrapper() return (obj, ) class InpaintPreprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return {"required": {}} RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self): obj = InpaintPreprocessor_wrapper() return (obj, ) class TilePreprocessor_Provider_for_SEGS: @classmethod def INPUT_TYPES(s): return {"required": {'pyrUp_iters': ("INT", {"default": 3, "min": 1, "max": 10, "step": 1})}} RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self, pyrUp_iters): obj = TilePreprocessor_wrapper(pyrUp_iters) return (obj, ) class MeshGraphormerDepthMapPreprocessorProvider_for_SEGS: @classmethod def INPUT_TYPES(s): return {"required": {}} RETURN_TYPES = ("SEGS_PREPROCESSOR",) FUNCTION = "doit" CATEGORY = "InspirePack/SEGS/ControlNet" def doit(self): obj = MeshGraphormerDepthMapPreprocessorProvider_wrapper() return (obj, ) NODE_CLASS_MAPPINGS = { "OpenPose_Preprocessor_Provider_for_SEGS //Inspire": OpenPose_Preprocessor_Provider_for_SEGS, "DWPreprocessor_Provider_for_SEGS //Inspire": DWPreprocessor_Provider_for_SEGS, "MiDaS_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": MiDaS_DepthMap_Preprocessor_Provider_for_SEGS, "LeRes_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": LeReS_DepthMap_Preprocessor_Provider_for_SEGS, # "Zoe_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": Zoe_DepthMap_Preprocessor_Provider_for_SEGS, "Canny_Preprocessor_Provider_for_SEGS //Inspire": Canny_Preprocessor_Provider_for_SEGS, "MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS //Inspire": MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS, "HEDPreprocessor_Provider_for_SEGS //Inspire": HEDPreprocessor_Provider_for_SEGS, "FakeScribblePreprocessor_Provider_for_SEGS //Inspire": FakeScribblePreprocessor_Provider_for_SEGS, "AnimeLineArt_Preprocessor_Provider_for_SEGS //Inspire": AnimeLineArt_Preprocessor_Provider_for_SEGS, "Manga2Anime_LineArt_Preprocessor_Provider_for_SEGS //Inspire": Manga2Anime_LineArt_Preprocessor_Provider_for_SEGS, "LineArt_Preprocessor_Provider_for_SEGS //Inspire": LineArt_Preprocessor_Provider_for_SEGS, "Color_Preprocessor_Provider_for_SEGS //Inspire": Color_Preprocessor_Provider_for_SEGS, "InpaintPreprocessor_Provider_for_SEGS //Inspire": InpaintPreprocessor_Provider_for_SEGS, "TilePreprocessor_Provider_for_SEGS //Inspire": TilePreprocessor_Provider_for_SEGS, "MeshGraphormerDepthMapPreprocessorProvider_for_SEGS //Inspire": MeshGraphormerDepthMapPreprocessorProvider_for_SEGS, "MediaPipeFaceMeshDetectorProvider //Inspire": MediaPipeFaceMeshDetectorProvider, } NODE_DISPLAY_NAME_MAPPINGS = { "OpenPose_Preprocessor_Provider_for_SEGS //Inspire": "OpenPose Preprocessor Provider (SEGS)", "DWPreprocessor_Provider_for_SEGS //Inspire": "DWPreprocessor Provider (SEGS)", "MiDaS_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": "MiDaS Depth Map Preprocessor Provider (SEGS)", "LeRes_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": "LeReS Depth Map Preprocessor Provider (SEGS)", # "Zoe_DepthMap_Preprocessor_Provider_for_SEGS //Inspire": "Zoe Depth Map Preprocessor Provider (SEGS)", "Canny_Preprocessor_Provider_for_SEGS //Inspire": "Canny Preprocessor Provider (SEGS)", "MediaPipe_FaceMesh_Preprocessor_Provider_for_SEGS //Inspire": "MediaPipe FaceMesh Preprocessor Provider (SEGS)", "HEDPreprocessor_Provider_for_SEGS //Inspire": "HED Preprocessor Provider (SEGS)", "FakeScribblePreprocessor_Provider_for_SEGS //Inspire": "Fake Scribble Preprocessor Provider (SEGS)", "AnimeLineArt_Preprocessor_Provider_for_SEGS //Inspire": "AnimeLineArt Preprocessor Provider (SEGS)", "Manga2Anime_LineArt_Preprocessor_Provider_for_SEGS //Inspire": "Manga2Anime LineArt Preprocessor Provider (SEGS)", "LineArt_Preprocessor_Provider_for_SEGS //Inspire": "LineArt Preprocessor Provider (SEGS)", "Color_Preprocessor_Provider_for_SEGS //Inspire": "Color Preprocessor Provider (SEGS)", "InpaintPreprocessor_Provider_for_SEGS //Inspire": "Inpaint Preprocessor Provider (SEGS)", "TilePreprocessor_Provider_for_SEGS //Inspire": "Tile Preprocessor Provider (SEGS)", "MeshGraphormerDepthMapPreprocessorProvider_for_SEGS //Inspire": "MeshGraphormer Depth Map Preprocessor Provider (SEGS)", "MediaPipeFaceMeshDetectorProvider //Inspire": "MediaPipeFaceMesh Detector Provider", }