Spaces:
Building
on
Zero
Building
on
Zero
File size: 5,720 Bytes
d1ae10f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
import torch
import nodes
import inspect
from .libs import utils
from nodes import MAX_RESOLUTION
class ConcatConditioningsWithMultiplier:
@classmethod
def INPUT_TYPES(s):
flex_inputs = {}
stack = inspect.stack()
if stack[1].function == 'get_input_data':
# bypass validation
for x in range(0, 100):
flex_inputs[f"multiplier{x}"] = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
else:
flex_inputs["multiplier1"] = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
return {
"required": {"conditioning1": ("CONDITIONING",), },
"optional": flex_inputs
}
RETURN_TYPES = ("CONDITIONING",)
FUNCTION = "doit"
CATEGORY = "InspirePack/__for_testing"
def doit(self, **kwargs):
if "ConditioningMultiplier_PoP" in nodes.NODE_CLASS_MAPPINGS:
obj = nodes.NODE_CLASS_MAPPINGS["ConditioningMultiplier_PoP"]()
else:
utils.try_install_custom_node('https://github.com/picturesonpictures/comfy_PoP',
"To use 'ConcatConditioningsWithMultiplier' node, 'comfy_PoP' extension is required.")
raise Exception("'comfy_PoP' node isn't installed.")
conditioning_to = kwargs['conditioning1']
conditioning_to = obj.multiply_conditioning_strength(conditioning=conditioning_to, multiplier=float(kwargs['multiplier1']))[0]
out = None
for k, conditioning_from in kwargs.items():
if k == 'conditioning1' or not k.startswith('conditioning'):
continue
out = []
if len(conditioning_from) > 1:
print(f"Warning: ConcatConditioningsWithMultiplier {k} contains more than 1 cond, only the first one will actually be applied to conditioning1.")
mkey = 'multiplier' + k[12:]
multiplier = float(kwargs[mkey])
conditioning_from = obj.multiply_conditioning_strength(conditioning=conditioning_from, multiplier=multiplier)[0]
cond_from = conditioning_from[0][0]
for i in range(len(conditioning_to)):
t1 = conditioning_to[i][0]
tw = torch.cat((t1, cond_from), 1)
n = [tw, conditioning_to[i][1].copy()]
out.append(n)
conditioning_to = out
if out is None:
return (kwargs['conditioning1'],)
else:
return (out,)
# CREDIT for ConditioningStretch, ConditioningUpscale: Davemane42
# Imported to support archived custom nodes.
# original code: https://github.com/Davemane42/ComfyUI_Dave_CustomNode/blob/main/MultiAreaConditioning.py
class ConditioningStretch:
def __init__(self) -> None:
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"conditioning": ("CONDITIONING",),
"resolutionX": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"resolutionY": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"newWidth": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
"newHeight": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
# "scalar": ("INT", {"default": 2, "min": 1, "max": 100, "step": 0.5}),
},
}
RETURN_TYPES = ("CONDITIONING",)
CATEGORY = "InspirePack/conditioning"
FUNCTION = 'upscale'
@staticmethod
def upscale(conditioning, resolutionX, resolutionY, newWidth, newHeight, scalar=1):
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
if 'area' in n[1]:
newWidth *= scalar
newHeight *= scalar
x = ((n[1]['area'][3] * 8) * newWidth / resolutionX) // 8
y = ((n[1]['area'][2] * 8) * newHeight / resolutionY) // 8
w = ((n[1]['area'][1] * 8) * newWidth / resolutionX) // 8
h = ((n[1]['area'][0] * 8) * newHeight / resolutionY) // 8
n[1]['area'] = tuple(map(lambda x: (((int(x) + 7) >> 3) << 3), [h, w, y, x]))
c.append(n)
return (c,)
class ConditioningUpscale:
def __init__(self) -> None:
pass
@classmethod
def INPUT_TYPES(s):
return {
"required": {
"conditioning": ("CONDITIONING",),
"scalar": ("INT", {"default": 2, "min": 1, "max": 100, "step": 0.5}),
},
}
RETURN_TYPES = ("CONDITIONING",)
CATEGORY = "InspirePack/conditioning"
FUNCTION = 'upscale'
@staticmethod
def upscale(conditioning, scalar):
c = []
for t in conditioning:
n = [t[0], t[1].copy()]
if 'area' in n[1]:
n[1]['area'] = tuple(map(lambda x: ((x * scalar + 7) >> 3) << 3, n[1]['area']))
c.append(n)
return (c,)
NODE_CLASS_MAPPINGS = {
"ConcatConditioningsWithMultiplier //Inspire": ConcatConditioningsWithMultiplier,
"ConditioningUpscale //Inspire": ConditioningUpscale,
"ConditioningStretch //Inspire": ConditioningStretch,
}
NODE_DISPLAY_NAME_MAPPINGS = {
"ConcatConditioningsWithMultiplier //Inspire": "Concat Conditionings with Multiplier (Inspire)",
"ConditioningUpscale //Inspire": "Conditioning Upscale (Inspire)",
"ConditioningStretch //Inspire": "Conditioning Stretch (Inspire)",
}
|