File size: 5,720 Bytes
d1ae10f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import nodes
import inspect
from .libs import utils
from nodes import MAX_RESOLUTION


class ConcatConditioningsWithMultiplier:
    @classmethod
    def INPUT_TYPES(s):
        flex_inputs = {}

        stack = inspect.stack()
        if stack[1].function == 'get_input_data':
            # bypass validation
            for x in range(0, 100):
                flex_inputs[f"multiplier{x}"] = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})
        else:
            flex_inputs["multiplier1"] = ("FLOAT", {"default": 1.0, "min": 0.0, "max": 10.0, "step": 0.01})

        return {
            "required": {"conditioning1": ("CONDITIONING",), },
            "optional": flex_inputs
        }

    RETURN_TYPES = ("CONDITIONING",)
    FUNCTION = "doit"

    CATEGORY = "InspirePack/__for_testing"

    def doit(self, **kwargs):
        if "ConditioningMultiplier_PoP" in nodes.NODE_CLASS_MAPPINGS:
            obj = nodes.NODE_CLASS_MAPPINGS["ConditioningMultiplier_PoP"]()
        else:
            utils.try_install_custom_node('https://github.com/picturesonpictures/comfy_PoP',
                                          "To use 'ConcatConditioningsWithMultiplier' node, 'comfy_PoP' extension is required.")
            raise Exception("'comfy_PoP' node isn't installed.")

        conditioning_to = kwargs['conditioning1']
        conditioning_to = obj.multiply_conditioning_strength(conditioning=conditioning_to, multiplier=float(kwargs['multiplier1']))[0]

        out = None
        for k, conditioning_from in kwargs.items():
            if k == 'conditioning1' or not k.startswith('conditioning'):
                continue

            out = []
            if len(conditioning_from) > 1:
                print(f"Warning: ConcatConditioningsWithMultiplier {k} contains more than 1 cond, only the first one will actually be applied to conditioning1.")

            mkey = 'multiplier' + k[12:]
            multiplier = float(kwargs[mkey])
            conditioning_from = obj.multiply_conditioning_strength(conditioning=conditioning_from, multiplier=multiplier)[0]
            cond_from = conditioning_from[0][0]

            for i in range(len(conditioning_to)):
                t1 = conditioning_to[i][0]
                tw = torch.cat((t1, cond_from), 1)
                n = [tw, conditioning_to[i][1].copy()]
                out.append(n)

            conditioning_to = out

        if out is None:
            return (kwargs['conditioning1'],)
        else:
            return (out,)


# CREDIT for ConditioningStretch, ConditioningUpscale: Davemane42
# Imported to support archived custom nodes.
# original code: https://github.com/Davemane42/ComfyUI_Dave_CustomNode/blob/main/MultiAreaConditioning.py
class ConditioningStretch:
    def __init__(self) -> None:
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "conditioning": ("CONDITIONING",),
                "resolutionX": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                "resolutionY": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                "newWidth": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                "newHeight": ("INT", {"default": 512, "min": 64, "max": MAX_RESOLUTION, "step": 64}),
                # "scalar": ("INT", {"default": 2, "min": 1, "max": 100, "step": 0.5}),
            },
        }

    RETURN_TYPES = ("CONDITIONING",)
    CATEGORY = "InspirePack/conditioning"

    FUNCTION = 'upscale'

    @staticmethod
    def upscale(conditioning, resolutionX, resolutionY, newWidth, newHeight, scalar=1):
        c = []
        for t in conditioning:

            n = [t[0], t[1].copy()]
            if 'area' in n[1]:
                newWidth *= scalar
                newHeight *= scalar

                x = ((n[1]['area'][3] * 8) * newWidth / resolutionX) // 8
                y = ((n[1]['area'][2] * 8) * newHeight / resolutionY) // 8
                w = ((n[1]['area'][1] * 8) * newWidth / resolutionX) // 8
                h = ((n[1]['area'][0] * 8) * newHeight / resolutionY) // 8

                n[1]['area'] = tuple(map(lambda x: (((int(x) + 7) >> 3) << 3), [h, w, y, x]))

            c.append(n)

        return (c,)


class ConditioningUpscale:
    def __init__(self) -> None:
        pass

    @classmethod
    def INPUT_TYPES(s):
        return {
            "required": {
                "conditioning": ("CONDITIONING",),
                "scalar": ("INT", {"default": 2, "min": 1, "max": 100, "step": 0.5}),
            },
        }

    RETURN_TYPES = ("CONDITIONING",)
    CATEGORY = "InspirePack/conditioning"

    FUNCTION = 'upscale'

    @staticmethod
    def upscale(conditioning, scalar):
        c = []
        for t in conditioning:

            n = [t[0], t[1].copy()]
            if 'area' in n[1]:
                n[1]['area'] = tuple(map(lambda x: ((x * scalar + 7) >> 3) << 3, n[1]['area']))

            c.append(n)

        return (c,)


NODE_CLASS_MAPPINGS = {
    "ConcatConditioningsWithMultiplier //Inspire": ConcatConditioningsWithMultiplier,
    "ConditioningUpscale //Inspire": ConditioningUpscale,
    "ConditioningStretch //Inspire": ConditioningStretch,
}

NODE_DISPLAY_NAME_MAPPINGS = {
    "ConcatConditioningsWithMultiplier //Inspire": "Concat Conditionings with Multiplier (Inspire)",
    "ConditioningUpscale //Inspire": "Conditioning Upscale (Inspire)",
    "ConditioningStretch //Inspire": "Conditioning Stretch (Inspire)",
}