Qa5im commited on
Commit
aa4f9dd
·
1 Parent(s): 43d80f5

added try except in test

Browse files
Files changed (1) hide show
  1. server.py +37 -37
server.py CHANGED
@@ -39,44 +39,41 @@ def delFiles():
39
 
40
 
41
  async def predictor(names, file_uploads, usersNum, recordingsNum):
42
- try:
43
- speaker_embed_list = []
44
- encoder = VoiceEncoder()
45
- # Iterating over list of files corresponding to each user
46
- speaker_wavs_list = []
47
- fileInd = 0
48
- names.pop() # to remove key named "test"
49
- print("file_uploads ", file_uploads, "recordingNums ", recordingsNum)
50
- for name in names:
51
- wav_fpaths = []
52
- for ind in range(int(recordingsNum)):
53
- print("inside yo")
54
- file_upload = file_uploads[fileInd]
55
- data = await file_upload.read()
56
- # appending person's name to the his/her recordings
57
- filename = name+"¬"+file_upload.filename
58
- file_path = UPLOAD_DIR / filename
59
- with open(file_path, "wb") as file_object:
60
- file_object.write(data)
61
- wav_fpaths.append(Path(file_path))
62
- fileInd += 1
63
- print("wav_fpaths len", len(wav_fpaths), "name", name)
64
- try:
65
- speaker_wavs = {speaker: list(map(preprocess_wav, wav_fpaths)) for speaker, wav_fpaths in
66
- groupby(tqdm(wav_fpaths, "Preprocessing wavs", len(wav_fpaths), unit="wavs"),
67
- lambda wav_fpath: os.path.basename(wav_fpath).split("¬")[0])} # extracting person's name from file name
68
- speaker_wavs_list.append(speaker_wavs)
69
- except Exception as e:
70
- print("error ", e)
71
- except Exception as e:
72
- print("function error ", e)
73
 
74
  # make a list of the pre-processed audios ki arrays
75
  for sp_wvs in speaker_wavs_list:
76
  speaker_embed_list.append(
77
  np.array([encoder.embed_speaker(wavs) for wavs in sp_wvs.values()]))
78
 
79
-
80
  # making preprocessed test audio
81
  wav_fpaths = []
82
  file_upload = file_uploads[-1]
@@ -87,11 +84,14 @@ async def predictor(names, file_uploads, usersNum, recordingsNum):
87
  file_object.write(data)
88
  wav_fpaths.append(Path(file_path))
89
  print("about to test\n")
90
- test_pos_wavs = {speaker: list(map(preprocess_wav, wav_fpaths)) for speaker, wav_fpaths in
91
- groupby(tqdm(wav_fpaths, "Preprocessing wavs", len(wav_fpaths), unit="wavs"),
92
- lambda wav_fpath: "test")}
93
- test_pos_emb = np.array([encoder.embed_speaker(wavs)
94
- for wavs in test_pos_wavs.values()])
 
 
 
95
 
96
  # calculates cosine similarity between the ground truth (test file) and registered audios
97
  speakers = {}
 
39
 
40
 
41
  async def predictor(names, file_uploads, usersNum, recordingsNum):
42
+ speaker_embed_list = []
43
+ encoder = VoiceEncoder()
44
+ # Iterating over list of files corresponding to each user
45
+ speaker_wavs_list = []
46
+ fileInd = 0
47
+ names.pop() # to remove key named "test"
48
+ print("file_uploads ", file_uploads, "recordingNums ", recordingsNum)
49
+ for name in names:
50
+ wav_fpaths = []
51
+ for ind in range(int(recordingsNum)):
52
+ print("inside yo")
53
+ file_upload = file_uploads[fileInd]
54
+ data = await file_upload.read()
55
+ # appending person's name to the his/her recordings
56
+ filename = name+"¬"+file_upload.filename
57
+ file_path = UPLOAD_DIR / filename
58
+ with open(file_path, "wb") as file_object:
59
+ file_object.write(data)
60
+ wav_fpaths.append(Path(file_path))
61
+ fileInd += 1
62
+ print("wav_fpaths len", len(wav_fpaths), "name", name)
63
+ try:
64
+ speaker_wavs = {speaker: list(map(preprocess_wav, wav_fpaths)) for speaker, wav_fpaths in
65
+ groupby(tqdm(wav_fpaths, "Preprocessing wavs", len(wav_fpaths), unit="wavs"),
66
+ lambda wav_fpath: os.path.basename(wav_fpath).split("¬")[0])} # extracting person's name from file name
67
+ speaker_wavs_list.append(speaker_wavs)
68
+ except Exception as e:
69
+ print("error ", e)
 
 
 
70
 
71
  # make a list of the pre-processed audios ki arrays
72
  for sp_wvs in speaker_wavs_list:
73
  speaker_embed_list.append(
74
  np.array([encoder.embed_speaker(wavs) for wavs in sp_wvs.values()]))
75
 
76
+ print("preprocessed audio ki array ", speaker_embed_list)
77
  # making preprocessed test audio
78
  wav_fpaths = []
79
  file_upload = file_uploads[-1]
 
84
  file_object.write(data)
85
  wav_fpaths.append(Path(file_path))
86
  print("about to test\n")
87
+ try:
88
+ test_pos_wavs = {speaker: list(map(preprocess_wav, wav_fpaths)) for speaker, wav_fpaths in
89
+ groupby(tqdm(wav_fpaths, "Preprocessing wavs", len(wav_fpaths), unit="wavs"),
90
+ lambda wav_fpath: "test")}
91
+ test_pos_emb = np.array([encoder.embed_speaker(wavs)
92
+ for wavs in test_pos_wavs.values()])
93
+ except Exception as error:
94
+ print("test error ", error)
95
 
96
  # calculates cosine similarity between the ground truth (test file) and registered audios
97
  speakers = {}