Qa5im commited on
Commit
a9242dd
·
1 Parent(s): 6f8fe08

commented out print stat

Browse files
Files changed (1) hide show
  1. server.py +10 -10
server.py CHANGED
@@ -45,7 +45,7 @@ async def predictor(names, file_uploads, usersNum, recordingsNum):
45
  speaker_wavs_list = []
46
  fileInd = 0
47
  names.pop() # to remove key named "test"
48
- print("file_uploads ", file_uploads, "recordingNums ", recordingsNum)
49
  for name in names:
50
  wav_fpaths = []
51
  for ind in range(int(recordingsNum)):
@@ -59,46 +59,46 @@ async def predictor(names, file_uploads, usersNum, recordingsNum):
59
  file_object.write(data)
60
  wav_fpaths.append(Path(file_path))
61
  fileInd += 1
62
- print("wav_fpaths len", len(wav_fpaths), "name", name)
63
  try:
64
  speaker_wavs = {speaker: list(map(preprocess_wav, wav_fpaths)) for speaker, wav_fpaths in
65
  groupby(tqdm(wav_fpaths, "Preprocessing wavs", len(wav_fpaths), unit="wavs"),
66
  lambda wav_fpath: os.path.basename(wav_fpath).split("¬")[0])} # extracting person's name from file name
67
  speaker_wavs_list.append(speaker_wavs)
68
  except Exception as e:
69
- print("error ", e)
 
70
 
71
  # make a list of the pre-processed audios ki arrays
72
  for sp_wvs in speaker_wavs_list:
73
  speaker_embed_list.append(
74
  np.array([encoder.embed_speaker(wavs) for wavs in sp_wvs.values()]))
75
 
76
- print("preprocessed audio ki array ", speaker_embed_list)
77
  # making preprocessed test audio
78
  wav_fpaths = []
79
  file_upload = file_uploads[-1]
80
  data = await file_upload.read()
81
- print("data", data)
82
  filename = "test¬"+file_upload.filename
83
  file_path = UPLOAD_DIR / filename
84
- print("filepath", file_path)
85
  with open(file_path, "wb") as file_object:
86
  file_object.write(data)
87
 
88
  wav_fpaths.append(Path(file_path))
89
- print("wav_fpath", wav_fpaths)
90
- print("about to test\n")
91
  try:
92
  test_pos_wavs = {speaker: list(map(preprocess_wav, wav_fpaths)) for speaker, wav_fpaths in
93
  groupby(tqdm(wav_fpaths, "Preprocessing wavs", len(wav_fpaths), unit="wavs"),
94
  lambda wav_fpath: "test")}
95
- print("test_pos_wavs", test_pos_wavs)
96
  except Exception as error:
97
  print("An exception occurred:", type(error).__name__)
98
  print("Exception details:", error)
99
  test_pos_emb = np.array([encoder.embed_speaker(wavs)
100
  for wavs in test_pos_wavs.values()])
101
- # print("test error ", error)
102
 
103
  # calculates cosine similarity between the ground truth (test file) and registered audios
104
  speakers = {}
 
45
  speaker_wavs_list = []
46
  fileInd = 0
47
  names.pop() # to remove key named "test"
48
+ # print("file_uploads ", file_uploads, "recordingNums ", recordingsNum)
49
  for name in names:
50
  wav_fpaths = []
51
  for ind in range(int(recordingsNum)):
 
59
  file_object.write(data)
60
  wav_fpaths.append(Path(file_path))
61
  fileInd += 1
62
+ # print("wav_fpaths len", len(wav_fpaths), "name", name)
63
  try:
64
  speaker_wavs = {speaker: list(map(preprocess_wav, wav_fpaths)) for speaker, wav_fpaths in
65
  groupby(tqdm(wav_fpaths, "Preprocessing wavs", len(wav_fpaths), unit="wavs"),
66
  lambda wav_fpath: os.path.basename(wav_fpath).split("¬")[0])} # extracting person's name from file name
67
  speaker_wavs_list.append(speaker_wavs)
68
  except Exception as e:
69
+ print("An exception occurred:", type(error).__name__)
70
+ print("Exception details:", error)
71
 
72
  # make a list of the pre-processed audios ki arrays
73
  for sp_wvs in speaker_wavs_list:
74
  speaker_embed_list.append(
75
  np.array([encoder.embed_speaker(wavs) for wavs in sp_wvs.values()]))
76
 
77
+ # print("preprocessed audio ki array ", speaker_embed_list)
78
  # making preprocessed test audio
79
  wav_fpaths = []
80
  file_upload = file_uploads[-1]
81
  data = await file_upload.read()
82
+ # print("data", data)
83
  filename = "test¬"+file_upload.filename
84
  file_path = UPLOAD_DIR / filename
85
+ # print("filepath", file_path)
86
  with open(file_path, "wb") as file_object:
87
  file_object.write(data)
88
 
89
  wav_fpaths.append(Path(file_path))
90
+ # print("wav_fpath", wav_fpaths)
91
+ print("about to test")
92
  try:
93
  test_pos_wavs = {speaker: list(map(preprocess_wav, wav_fpaths)) for speaker, wav_fpaths in
94
  groupby(tqdm(wav_fpaths, "Preprocessing wavs", len(wav_fpaths), unit="wavs"),
95
  lambda wav_fpath: "test")}
96
+ # print("test_pos_wavs", test_pos_wavs)
97
  except Exception as error:
98
  print("An exception occurred:", type(error).__name__)
99
  print("Exception details:", error)
100
  test_pos_emb = np.array([encoder.embed_speaker(wavs)
101
  for wavs in test_pos_wavs.values()])
 
102
 
103
  # calculates cosine similarity between the ground truth (test file) and registered audios
104
  speakers = {}