File size: 5,900 Bytes
14e6eb4
5f19fd8
14e6eb4
 
 
 
d6bb83a
14e6eb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e9e63f
 
14e6eb4
 
 
 
 
 
 
 
 
 
cb3f175
 
14e6eb4
8e6f2c4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb21181
8e6f2c4
 
 
 
cb3f175
5452068
29ad85a
5452068
cb3f175
5ce7819
8e6f2c4
 
 
0a535dd
14e6eb4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
77c319a
14e6eb4
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import os
import io
os.environ["KERAS_BACKEND"] = "tensorflow"
import keras
import numpy as np
from PIL import Image
import gradio as gr
import tensorflow as tf
from keras import layers
from pathlib import Path
from collections import Counter

def ctc_batch_cost(y_true, y_pred, input_length, label_length):
    label_length = tf.cast(tf.squeeze(label_length, axis=-1), tf.int32)
    input_length = tf.cast(tf.squeeze(input_length, axis=-1), tf.int32)
    sparse_labels = tf.cast(ctc_label_dense_to_sparse(y_true, label_length), tf.int32)

    y_pred = tf.math.log(tf.transpose(y_pred, perm=[1, 0, 2]) + keras.backend.epsilon())

    return tf.expand_dims(
        tf.compat.v1.nn.ctc_loss(
            inputs=y_pred, labels=sparse_labels, sequence_length=input_length
        ),
        1,
    )


def ctc_label_dense_to_sparse(labels, label_lengths):
    label_shape = tf.shape(labels)
    num_batches_tns = tf.stack([label_shape[0]])
    max_num_labels_tns = tf.stack([label_shape[1]])

    def range_less_than(old_input, current_input):
        return tf.expand_dims(tf.range(tf.shape(old_input)[1]), 0) < tf.fill(
            max_num_labels_tns, current_input
        )

    init = tf.cast(tf.fill([1, label_shape[1]], 0), tf.bool)
    dense_mask = tf.compat.v1.scan(
        range_less_than, label_lengths, initializer=init, parallel_iterations=1
    )
    dense_mask = dense_mask[:, 0, :]

    label_array = tf.reshape(
        tf.tile(tf.range(0, label_shape[1]), num_batches_tns), label_shape
    )
    label_ind = tf.compat.v1.boolean_mask(label_array, dense_mask)

    batch_array = tf.transpose(
        tf.reshape(
            tf.tile(tf.range(0, label_shape[0]), max_num_labels_tns),
            tf.reverse(label_shape, [0]),
        )
    )
    batch_ind = tf.compat.v1.boolean_mask(batch_array, dense_mask)
    indices = tf.transpose(
        tf.reshape(tf.concat([batch_ind, label_ind], axis=0), [2, -1])
    )

    vals_sparse = tf.compat.v1.gather_nd(labels, indices)

    return tf.SparseTensor(
        tf.cast(indices, tf.int64), vals_sparse, tf.cast(label_shape, tf.int64)
    )


class CTCLayer(layers.Layer):
    def __init__(self, name=None):
        super().__init__(name=name)
        self.loss_fn = ctc_batch_cost

    def call(self, y_true, y_pred):
        # Compute the training-time loss value and add it to the layer using `self.add_loss()`.
        batch_len = tf.cast(tf.shape(y_true)[0], dtype="int64")
        input_length = tf.cast(tf.shape(y_pred)[1], dtype="int64")
        label_length = tf.cast(tf.shape(y_true)[1], dtype="int64")

        input_length = input_length * tf.ones(shape=(batch_len, 1), dtype="int64")
        label_length = label_length * tf.ones(shape=(batch_len, 1), dtype="int64")

        loss = self.loss_fn(y_true, y_pred, input_length, label_length)
        self.add_loss(loss)

        # At test time, just return the computed predictions
        return y_pred

loaded_model = keras.models.load_model("ocr_model_pred.h5", custom_objects={"CTCLayer": CTCLayer})
loaded_model.load_weights("ocr_model_pred_weights.h5")
max_len = 5

characters = ['1', '2', '3', '4', '5', '6', '7', '8', '9', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z']
# Mapping characters to integers
char_to_num = layers.StringLookup(vocabulary=list(characters), mask_token=None)

# Mapping integers back to original characters
num_to_char = layers.StringLookup(
    vocabulary=char_to_num.get_vocabulary(), mask_token=None, invert=True
)
image_width = 128
image_height = 32

def distortion_free_resize(image, img_size):
  w, h = img_size
  image = tf.image.resize(image, size=(h, w), preserve_aspect_ratio=True)

  # Check tha amount of padding needed to be done.
  pad_height = h - tf.shape(image)[0]
  pad_width = w - tf.shape(image)[1]

  # only necessary if you want to do same amount of padding on both sides.
  if pad_height % 2 != 0:
    height = pad_height // 2
    pad_height_top = height +1
    pad_height_bottom = height
  else:
    pad_height_top = pad_height_bottom = pad_height // 2

  if pad_width % 2 != 0:
    width = pad_width // 2
    pad_width_left = width + 1
    pad_width_right = width
  else:
    pad_width_left = pad_width_right = pad_width // 2

  image = tf.pad(
      image, paddings=[
          [pad_height_top, pad_height_bottom],
          [pad_width_left, pad_width_right],
          [0, 0],
      ],)
  image = tf.transpose(image, perm=[1,0,2])
  image = tf.image.flip_left_right(image)
  return image

def decode_batch_predictions(input_image, img_size=(image_width, image_height)):
    img_byte_array = io.BytesIO()
    input_image.save(img_byte_array, format='JPEG')  # Change the format as needed
    input_image = img_byte_array.getvalue()
    
    input_image = tf.io.decode_image(input_image, channels=1,  dtype=tf.dtypes.uint8) 
    input_image = distortion_free_resize(input_image, img_size)
    input_image = tf.image.convert_image_dtype(input_image, tf.float32)/255.0
    
    pred = loaded_model.predict(input_image)
    input_len = np.ones(pred.shape[0]) * pred.shape[1]
    results = keras.backend.ctc_decode(pred, input_length=input_len, greedy=True)[0][0][
        :, :max_len
    ]

    # Iterate over the results and get back the text.
    output_text = []

    for res in results:
      res = tf.gather(res, tf.where(tf.math.not_equal(res, -1)))
      res = tf.strings.reduce_join(num_to_char(res)).numpy().decode("utf-8")
      output_text.append(res)

    return output_text

interface = gr.Interface(fn=decode_batch_predictions, inputs=gr.Image(label="Input image", type="pil"),
                         outputs='text',title='Captcha Recognition', theme='darkhuggingface')
interface.launch(inline=False)