Spaces:
Build error
Build error
| import os | |
| import cv2 | |
| import smtplib | |
| import gradio as gr | |
| from email import encoders | |
| from ultralytics import YOLO | |
| from email.mime.text import MIMEText | |
| from email.mime.base import MIMEBase | |
| from email.mime.multipart import MIMEMultipart | |
| sender_email = os.environ.get("sender_email") | |
| receiver_email = os.environ.get("receiver_email") | |
| sender_password = os.environ.get("sender_password") | |
| smtp_port = 80 | |
| smtp_server = "smtp.gmail.com" | |
| subject = "Accident detected" | |
| def send_email(accident_type,image): | |
| body = accident_type | |
| msg = MIMEMultipart() | |
| msg['From'] = sender_email | |
| msg['To'] = receiver_email | |
| msg['Subject'] = subject | |
| msg.attach(MIMEText(body, 'plain')) | |
| filename = "res.png" | |
| is_success, buffer = cv2.imencode(".jpg", image) | |
| attachment = buffer.tobytes() | |
| attachment_package = MIMEBase('application', 'octet-stream') | |
| attachment_package.set_payload(attachment) | |
| encoders.encode_base64(attachment_package) | |
| attachment_package.add_header('Content-Disposition', "attachment; filename=" + filename) | |
| msg.attach(attachment_package) | |
| text = msg.as_string() | |
| print("Connecting to server") | |
| gmail_server = smtplib.SMTP(smtp_server, smtp_port) | |
| gmail_server.starttls() | |
| gmail_server.login(sender_email, sender_password) | |
| print("Successfully Connected to Server") | |
| print("Sending email to ", receiver_email) | |
| gmail_server.sendmail(sender_email, receiver_email, text) | |
| print("Email sent to ", receiver_email) | |
| gmail_server.quit() | |
| def check_acc(box): | |
| res_index_list = box.cls.tolist() | |
| result = "" | |
| for index in res_index_list: | |
| if index == 1: | |
| result = "Bike Bike Accident Detected" | |
| break | |
| elif index == 2: | |
| result = "Bike Object Accident Detected" | |
| break | |
| elif index == 3: | |
| result = "Bike Person Accident Detected" | |
| break | |
| elif index == 5: | |
| result = "Car Bike Accident Detected" | |
| break | |
| elif index == 6: | |
| result = "Car Car Accident Detected" | |
| break | |
| elif index == 7: | |
| result = "Car Object Accident Detected" | |
| break | |
| elif index == 8: | |
| result = "Car Person Accident Detected" | |
| break | |
| return result | |
| def image_predict(image): | |
| res = "" | |
| model_path = "best.pt" | |
| model = YOLO(model_path) | |
| results = model.predict(image,conf = 0.6,iou = 0.3,imgsz = 512) | |
| box = results[0].boxes | |
| res = check_acc(box) | |
| annotated_frame = results[0].plot() | |
| if len(res) >0: | |
| # annotated_frame_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR) | |
| # send_email(res, annotated_frame_bgr) | |
| return (res, annotated_frame) | |
| return ("No Class Detected", None) | |
| def extract_frames(video): | |
| vidcap = cv2.VideoCapture(video) | |
| vidcap = cv2.VideoCapture(video) | |
| fps = vidcap.get(cv2.CAP_PROP_FPS) | |
| nof = 4 | |
| frame_no = 0 | |
| while vidcap.isOpened(): | |
| res = "" | |
| render = None | |
| success, image = vidcap.read() | |
| if success ==False: | |
| break | |
| # Check if it's time to process the frame based on the desired interval | |
| if (frame_no % (int(fps / nof))) == 0: | |
| model_path = "best.pt" | |
| model = YOLO(model_path) | |
| results = model.predict(image,conf = 0.6,iou = 0.3,imgsz = 512) | |
| box = results[0].boxes | |
| res = check_acc(box) | |
| annotated_frame = results[0].plot() | |
| if len(res) >0: | |
| # annotated_frame_bgr = cv2.cvtColor(annotated_frame, cv2.COLOR_RGB2BGR) | |
| # send_email(res, annotated_frame_bgr) | |
| return (res, annotated_frame) | |
| frame_no += 1 # Increment frame number | |
| return ("No Class Detected", None) | |
| def take_input(image, video): | |
| if(video != None): | |
| res = extract_frames(video) | |
| else: | |
| res = image_predict(image) | |
| return res | |
| with gr.Blocks(title="YOLOS Object Detection", css=".gradio-container {background:lightyellow;}") as demo: | |
| gr.HTML('<h1>Accident Detection Using Yolov8</h1>') | |
| gr.HTML("<br>") | |
| with gr.Row(): | |
| input_image = gr.Image(label="Input image") | |
| input_video = gr.Video(label="Input video") | |
| output_label = gr.Text(label="output label") | |
| output_image = gr.Image(label="Output image") | |
| gr.HTML("<br>") | |
| send_btn = gr.Button("Detect") | |
| gr.HTML("<br>") | |
| send_btn.click(fn=take_input, inputs=[input_image, input_video], outputs=[output_label, output_image]) | |
| demo.launch(debug=True) | |