Spaces:
Sleeping
Sleeping
Update qabot.py
Browse files
qabot.py
CHANGED
@@ -1,66 +1,68 @@
|
|
1 |
-
from langchain_community.llms import CTransformers
|
2 |
-
from langchain.prompts import PromptTemplate
|
3 |
-
from langchain_core.runnables import RunnableSequence
|
4 |
-
from langchain.chains import RetrievalQA
|
5 |
-
from langchain_community.embeddings import GPT4AllEmbeddings
|
6 |
-
from langchain_community.vectorstores import FAISS
|
7 |
-
|
8 |
-
from huggingface_hub import hf_hub_download
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
#
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
#
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
1 |
+
from langchain_community.llms import CTransformers
|
2 |
+
from langchain.prompts import PromptTemplate
|
3 |
+
from langchain_core.runnables import RunnableSequence
|
4 |
+
from langchain.chains import RetrievalQA
|
5 |
+
from langchain_community.embeddings import GPT4AllEmbeddings
|
6 |
+
from langchain_community.vectorstores import FAISS
|
7 |
+
|
8 |
+
from huggingface_hub import hf_hub_download
|
9 |
+
# !pip install llama-cpp-python
|
10 |
+
|
11 |
+
# from llama_cpp import Llama
|
12 |
+
|
13 |
+
# model_file = Llama.from_pretrained(
|
14 |
+
# repo_id="Pudding48/TinyLLamaTest",
|
15 |
+
# filename="tinyllama-1.1b-chat-v1.0.Q8_0.gguf",
|
16 |
+
# )
|
17 |
+
|
18 |
+
model_file = hf_hub_download(
|
19 |
+
repo_id="Pudding48/TinyLlamaTest", # 🟢 This must be a model repo, not a Space
|
20 |
+
filename="tinyllama-1.1b-chat-v1.0.Q8_0.gguf",
|
21 |
+
cache_dir="model"
|
22 |
+
)
|
23 |
+
|
24 |
+
# Vector store location
|
25 |
+
vector_dp_path = "vectorstores/db_faiss"
|
26 |
+
|
27 |
+
from prepare_vector_dp import create_db_from_text
|
28 |
+
create_db_from_text()
|
29 |
+
|
30 |
+
# Load LLM with CTransformers
|
31 |
+
def load_llm(model_file):
|
32 |
+
return CTransformers(
|
33 |
+
model=model_file,
|
34 |
+
model_type="llama",
|
35 |
+
temperature=0.01,
|
36 |
+
config={'gpu_layers': 0},
|
37 |
+
max_new_tokens=128,
|
38 |
+
context_length=512
|
39 |
+
)
|
40 |
+
|
41 |
+
# Create the prompt
|
42 |
+
def creat_prompt(template):
|
43 |
+
return PromptTemplate(template=template, input_variables=["context", "question"])
|
44 |
+
|
45 |
+
# Create QA pipeline
|
46 |
+
def create_qa_chain(prompt, llm, db):
|
47 |
+
return RetrievalQA.from_chain_type(
|
48 |
+
llm=llm,
|
49 |
+
chain_type="stuff",
|
50 |
+
retriever=db.as_retriever(search_kwargs={"k": 1}),
|
51 |
+
return_source_documents=False,
|
52 |
+
chain_type_kwargs={'prompt': prompt}
|
53 |
+
)
|
54 |
+
|
55 |
+
# Load vector DB
|
56 |
+
def read_vector_db():
|
57 |
+
embedding_model = GPT4AllEmbeddings(model_file=model_file)
|
58 |
+
return FAISS.load_local(vector_dp_path, embedding_model, allow_dangerous_deserialization=True)
|
59 |
+
|
60 |
+
# Build everything
|
61 |
+
db = read_vector_db()
|
62 |
+
llm = load_llm(model_file)
|
63 |
+
|
64 |
+
template = """<|im_start|>system\nSử dụng thông tin sau đây để trả lời câu hỏi. Nếu bạn không biết câu trả lời, hãy nói không biết, đừng cố tạo ra câu trả lời\n
|
65 |
+
{context}<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant"""
|
66 |
+
|
67 |
+
prompt = creat_prompt(template)
|
68 |
+
llm_chain = create_qa_chain(prompt, llm, db)
|