Spaces:
Sleeping
Sleeping
File size: 2,364 Bytes
45e2c69 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
from langchain_community.llms import CTransformers
from langchain.prompts import PromptTemplate
from langchain_core.runnables import RunnableSequence
from langchain.chains import RetrievalQA
from langchain_community.embeddings import GPT4AllEmbeddings
from langchain_community.vectorstores import FAISS
from huggingface_hub import hf_hub_download
model_file = hf_hub_download(
repo_id="Pudding48/TinyLlamaTest", # Replace with your model repo
filename="tinyllama-1.1b-chat-v1.0.Q8_0.gguf",
cache_dir="model" # Will be created in the Space's environment
)
# Cấu hình
#model_file = "model/tinyllama-1.1b-chat-v1.0.Q8_0.gguf"
vector_dp_path = "vectorstores/db_faiss"
# Load LLM
def load_llm(model_file):
llm = CTransformers(
model=model_file,
model_type="llama",
temperature=0.01,
config={'gpu_layers': 0},
max_new_tokens=128,
context_length=512
)
return llm
# Tạo prompt template
def creat_prompt(template):
prompt = PromptTemplate(template=template, input_variables=["context","question"])
return prompt
# Tạo pipeline chain (thay cho LLMChain)
def create_qa_chain(prompt, llm, db):
llm_chain = RetrievalQA.from_chain_type(
llm = llm,
chain_type = "stuff",
retriever =db.as_retriever(search_kwargs = {"k":1}),
return_source_documents = False,
chain_type_kwargs={'prompt':prompt}
)
return llm_chain
def read_vector_db():
embedding_model = GPT4AllEmbeddings(model_file = "model/all-minilm-l6-v2-q4_0.gguf")
db = FAISS.load_local(vector_dp_path, embedding_model,allow_dangerous_deserialization=True)
return db
db = read_vector_db()
llm = load_llm(model_file)
# Mẫu prompt
template = """<|im_start|>system\nSử dụng thông tin sau đây để trả lời câu hỏi. Nếu bạn không biết câu trả lời, hãy nói không biết, đừng cố tạo ra câu trả lời\n
{context}<|im_end|>\n<|im_start|>user\n{question}<|im_end|>\n<|im_start|>assistant"""
# Khởi tạo các thành phần
prompt = creat_prompt(template)
llm_chain =create_qa_chain(prompt, llm, db)
# Chạy thử chain
question = "Khoa công nghệ thông tin thành lập năm nào ?"
response = llm_chain.invoke({"query": question})
print(response)
|