import gradio as gr from datasets import load_dataset from sentence_transformers import SentenceTransformer, CrossEncoder import faiss import torch import numpy as np from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline import os import spaces # Login automatically if HF_TOKEN is present hf_token = os.getenv("HF_TOKEN") if hf_token: from huggingface_hub import login login(token=hf_token) # Load corpus print("Loading dataset...") dataset = load_dataset("rag-datasets/rag-mini-wikipedia", "text-corpus") # corpus = [item for item in dataset["passages"]] # Always clean + use this corpus consistently corpus = [] for item in dataset["passages"]: text = str(item).strip() if text: corpus.append(text) # Embedding model print("Encoding corpus...") embedder = SentenceTransformer("all-MiniLM-L6-v2") corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True, device='cpu') corpus_embeddings_np = corpus_embeddings.numpy() # FAISS index index = faiss.IndexFlatL2(corpus_embeddings_np.shape[1]) index.add(corpus_embeddings_np) # Reranker model # reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2") # Generator (choose one: local HF model or OpenAI) tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3") model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", torch_dtype=torch.float16) generator = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150) @spaces.GPU def rag_pipeline(query): # Embed query query_embedding = embedder.encode([query], convert_to_tensor=True, device='cpu').numpy() # Retrieve top-k from FAISS D, I = index.search(query_embedding, k=5) retrieved_docs = [corpus[idx] for idx in I[0]] print("Retrieved indices:", I[0]) print("Retrieved docs:") for doc in retrieved_docs: print("-", repr(doc)) # # Rerank # rerank_pairs = [[str(query), str(doc)] for doc in retrieved_docs] # scores = reranker.predict(rerank_pairs) # reranked_docs = [doc for _, doc in sorted(zip(scores, retrieved_docs), reverse=True)] # Combine for context context = "\n\n".join(retrieved_docs[:2]) prompt = f"""Answer the following question using the provided context.\n\nContext:\n{context}\n\nQuestion: {query}\nAnswer:""" # Generate response = generator(prompt)[0]["generated_text"] return response.split("Answer:")[-1].strip() # Gradio UI iface = gr.Interface(fn=rag_pipeline, inputs=gr.Textbox(lines=2, placeholder="How fast is a penguin?"), outputs="text", title="Mini RAG Wikipedia Demo", description="Retrieval-Augmented Generation on a small Wikipedia subset.") iface.launch()