Spaces:
Sleeping
Sleeping
File size: 2,591 Bytes
a3ef303 818c1d2 ddc705c 8ca6390 ddc705c 818c1d2 456bc55 818c1d2 a0908b4 818c1d2 ddc705c 818c1d2 72355a9 818c1d2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 |
import gradio as gr
from datasets import load_dataset
from sentence_transformers import SentenceTransformer, CrossEncoder
import faiss
import torch
import numpy as np
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import os
import spaces
@spaces.GPU
def claim_gpu():
# Dummy function to make Spaces detect GPU usage
pass
claim_gpu()
# Login automatically if HF_TOKEN is present
hf_token = os.getenv("HF_TOKEN")
if hf_token:
from huggingface_hub import login
login(token=hf_token)
# Load corpus
print("Loading dataset...")
dataset = load_dataset("rag-datasets/rag-mini-wikipedia", "text-corpus")
corpus = [item for item in dataset["passages"]]
# Embedding model
print("Encoding corpus...")
embedder = SentenceTransformer("all-MiniLM-L6-v2")
corpus_embeddings = embedder.encode(corpus, convert_to_tensor=True, device='cpu')
corpus_embeddings_np = corpus_embeddings.numpy()
# FAISS index
index = faiss.IndexFlatL2(corpus_embeddings_np.shape[1])
index.add(corpus_embeddings_np)
# Reranker model
reranker = CrossEncoder("cross-encoder/ms-marco-MiniLM-L-6-v2")
# Generator (choose one: local HF model or OpenAI)
tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3")
model = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-Instruct-v0.3", device_map="auto", torch_dtype=torch.float16)
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, max_new_tokens=150)
def rag_pipeline(query):
# Embed query
query_embedding = embedder.encode([query], convert_to_tensor=True, device='cpu').numpy()
# Retrieve top-k from FAISS
D, I = index.search(query_embedding, k=5)
retrieved_docs = [corpus[idx] for idx in I[0]]
# Rerank
rerank_pairs = [[query, doc] for doc in retrieved_docs]
scores = reranker.predict(rerank_pairs)
reranked_docs = [doc for _, doc in sorted(zip(scores, retrieved_docs), reverse=True)]
# Combine for context
context = "\n\n".join(reranked_docs[:2])
prompt = f"""Answer the following question using the provided context.\n\nContext:\n{context}\n\nQuestion: {query}\nAnswer:"""
# Generate
response = generator(prompt)[0]["generated_text"]
return response.split("Answer:")[-1].strip()
# Gradio UI
iface = gr.Interface(fn=rag_pipeline,
inputs=gr.Textbox(lines=2, placeholder="Ask something..."),
outputs="text",
title="Mini RAG Wikipedia Demo",
description="Retrieval-Augmented Generation on a small Wikipedia subset.")
iface.launch()
|