Spaces:
Running
Running
| from typing import Dict | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from torchmetrics.multimodal.clip_score import CLIPScore | |
| class CLIPMetric: | |
| def __init__(self, model_name_or_path: str = "openai/clip-vit-large-patch14"): | |
| self.device = torch.device( | |
| "cuda" | |
| if torch.cuda.is_available() | |
| else "mps" | |
| if torch.backends.mps.is_available() | |
| else "cpu" | |
| ) | |
| self.metric = CLIPScore(model_name_or_path="openai/clip-vit-large-patch14") | |
| self.metric.to(self.device) | |
| def name(self) -> str: | |
| return "clip" | |
| def compute_score(self, image: Image.Image, prompt: str) -> Dict[str, float]: | |
| image_tensor = torch.from_numpy(np.array(image)).permute(2, 0, 1).float() | |
| image_tensor = image_tensor.to(self.device) | |
| score = self.metric(image_tensor, prompt) | |
| return {"clip": score.item()} | |