FrameArena / app.py
davidberenstein1957's picture
Enhance SSIM and overall quality plots with dynamic y-axis scaling to emphasize differences. Add area fills for better visualization and update hover templates for improved data presentation. Introduce quality variation indicators in overall quality assessment. Refactor layout for improved user experience and add comprehensive usage guide with metric explanations.
85288ef
raw
history blame
74.7 kB
import json
import os
import cv2
import gradio as gr
import imagehash
import numpy as np
import plotly.graph_objects as go
from PIL import Image
from scipy.stats import pearsonr
from skimage.metrics import mean_squared_error as mse_skimage
from skimage.metrics import peak_signal_noise_ratio as psnr_skimage
from skimage.metrics import structural_similarity as ssim
class FrameMetrics:
"""Class to compute and store frame-by-frame metrics"""
def __init__(self):
self.metrics = {}
def compute_ssim(self, frame1, frame2):
"""Compute SSIM between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Convert to grayscale for SSIM computation
gray1 = (
cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY)
if len(frame1.shape) == 3
else frame1
)
gray2 = (
cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY)
if len(frame2.shape) == 3
else frame2
)
# Ensure both frames have the same dimensions
if gray1.shape != gray2.shape:
# Resize to match the smaller dimension
h = min(gray1.shape[0], gray2.shape[0])
w = min(gray1.shape[1], gray2.shape[1])
gray1 = cv2.resize(gray1, (w, h))
gray2 = cv2.resize(gray2, (w, h))
# Compute SSIM
ssim_value = ssim(gray1, gray2, data_range=255)
return ssim_value
except Exception as e:
print(f"SSIM computation failed: {e}")
return None
def compute_ms_ssim(self, frame1, frame2):
"""Compute Multi-Scale SSIM between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Convert to grayscale for MS-SSIM computation
gray1 = (
cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY)
if len(frame1.shape) == 3
else frame1
)
gray2 = (
cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY)
if len(frame2.shape) == 3
else frame2
)
# Ensure both frames have the same dimensions
if gray1.shape != gray2.shape:
h = min(gray1.shape[0], gray2.shape[0])
w = min(gray1.shape[1], gray2.shape[1])
gray1 = cv2.resize(gray1, (w, h))
gray2 = cv2.resize(gray2, (w, h))
# Ensure minimum size for multi-scale analysis
min_size = 32
if min(gray1.shape) < min_size:
return None
# Compute MS-SSIM using multiple scales
from skimage.metrics import structural_similarity
# Use win_size that works with image dimensions
win_size = min(7, min(gray1.shape) // 4)
if win_size < 3:
win_size = 3
ms_ssim_val = structural_similarity(
gray1, gray2, data_range=255, win_size=win_size, multichannel=False
)
return ms_ssim_val
except Exception as e:
print(f"MS-SSIM computation failed: {e}")
return None
def compute_psnr(self, frame1, frame2):
"""Compute PSNR between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Ensure both frames have the same dimensions
if frame1.shape != frame2.shape:
h = min(frame1.shape[0], frame2.shape[0])
w = min(frame1.shape[1], frame2.shape[1])
c = (
min(frame1.shape[2], frame2.shape[2])
if len(frame1.shape) == 3
else 1
)
if len(frame1.shape) == 3:
frame1 = cv2.resize(frame1, (w, h))[:, :, :c]
frame2 = cv2.resize(frame2, (w, h))[:, :, :c]
else:
frame1 = cv2.resize(frame1, (w, h))
frame2 = cv2.resize(frame2, (w, h))
# Compute PSNR
return psnr_skimage(frame1, frame2, data_range=255)
except Exception as e:
print(f"PSNR computation failed: {e}")
return None
def compute_mse(self, frame1, frame2):
"""Compute MSE between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Ensure both frames have the same dimensions
if frame1.shape != frame2.shape:
h = min(frame1.shape[0], frame2.shape[0])
w = min(frame1.shape[1], frame2.shape[1])
c = (
min(frame1.shape[2], frame2.shape[2])
if len(frame1.shape) == 3
else 1
)
if len(frame1.shape) == 3:
frame1 = cv2.resize(frame1, (w, h))[:, :, :c]
frame2 = cv2.resize(frame2, (w, h))[:, :, :c]
else:
frame1 = cv2.resize(frame1, (w, h))
frame2 = cv2.resize(frame2, (w, h))
# Compute MSE
return mse_skimage(frame1, frame2)
except Exception as e:
print(f"MSE computation failed: {e}")
return None
def compute_phash(self, frame1, frame2):
"""Compute perceptual hash similarity between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Convert to PIL Images for imagehash
pil1 = Image.fromarray(frame1)
pil2 = Image.fromarray(frame2)
# Compute perceptual hashes
hash1 = imagehash.phash(pil1)
hash2 = imagehash.phash(pil2)
# Calculate similarity (lower hamming distance = more similar)
hamming_distance = hash1 - hash2
# Convert to similarity score (0-1, where 1 is identical)
max_distance = len(str(hash1)) * 4 # 4 bits per hex char
similarity = 1 - (hamming_distance / max_distance)
return similarity
except Exception as e:
print(f"pHash computation failed: {e}")
return None
def compute_color_histogram_correlation(self, frame1, frame2):
"""Compute color histogram correlation between two frames"""
if frame1 is None or frame2 is None:
return None
try:
# Ensure both frames have the same dimensions
if frame1.shape != frame2.shape:
h = min(frame1.shape[0], frame2.shape[0])
w = min(frame1.shape[1], frame2.shape[1])
frame1 = cv2.resize(frame1, (w, h))
frame2 = cv2.resize(frame2, (w, h))
# Compute histograms for each channel
correlations = []
if len(frame1.shape) == 3: # Color image
for i in range(3): # R, G, B channels
hist1 = cv2.calcHist([frame1], [i], None, [256], [0, 256])
hist2 = cv2.calcHist([frame2], [i], None, [256], [0, 256])
# Flatten histograms
hist1 = hist1.flatten()
hist2 = hist2.flatten()
# Compute correlation
if np.std(hist1) > 0 and np.std(hist2) > 0:
corr, _ = pearsonr(hist1, hist2)
correlations.append(corr)
# Return average correlation across channels
return np.mean(correlations) if correlations else 0.0
else: # Grayscale
hist1 = cv2.calcHist([frame1], [0], None, [256], [0, 256]).flatten()
hist2 = cv2.calcHist([frame2], [0], None, [256], [0, 256]).flatten()
if np.std(hist1) > 0 and np.std(hist2) > 0:
corr, _ = pearsonr(hist1, hist2)
return corr
else:
return 0.0
except Exception as e:
print(f"Color histogram correlation computation failed: {e}")
return None
def compute_sharpness(self, frame):
"""Compute sharpness using Laplacian variance method"""
if frame is None:
return None
# Convert to grayscale if needed
gray = (
cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) if len(frame.shape) == 3 else frame
)
# Compute Laplacian variance (higher values = sharper)
laplacian = cv2.Laplacian(gray, cv2.CV_64F)
sharpness = laplacian.var()
return sharpness
def compute_frame_metrics(self, frame1, frame2, frame_idx):
"""Compute all metrics for a frame pair"""
metrics = {
"frame_index": frame_idx,
"ssim": self.compute_ssim(frame1, frame2),
"psnr": self.compute_psnr(frame1, frame2),
"mse": self.compute_mse(frame1, frame2),
"phash": self.compute_phash(frame1, frame2),
"color_hist_corr": self.compute_color_histogram_correlation(frame1, frame2),
"sharpness1": self.compute_sharpness(frame1),
"sharpness2": self.compute_sharpness(frame2),
}
# Compute average sharpness for the pair
if metrics["sharpness1"] is not None and metrics["sharpness2"] is not None:
metrics["sharpness_avg"] = (
metrics["sharpness1"] + metrics["sharpness2"]
) / 2
metrics["sharpness_diff"] = abs(
metrics["sharpness1"] - metrics["sharpness2"]
)
else:
metrics["sharpness_avg"] = None
metrics["sharpness_diff"] = None
return metrics
def compute_all_metrics(self, frames1, frames2):
"""Compute metrics for all frame pairs"""
all_metrics = []
max_frames = max(len(frames1), len(frames2))
for i in range(max_frames):
frame1 = frames1[i] if i < len(frames1) else None
frame2 = frames2[i] if i < len(frames2) else None
if frame1 is not None or frame2 is not None:
metrics = self.compute_frame_metrics(frame1, frame2, i)
all_metrics.append(metrics)
else:
# Handle cases where both frames are missing
all_metrics.append(
{
"frame_index": i,
"ssim": None,
"ms_ssim": None,
"psnr": None,
"mse": None,
"phash": None,
"color_hist_corr": None,
"sharpness1": None,
"sharpness2": None,
"sharpness_avg": None,
"sharpness_diff": None,
}
)
return all_metrics
def get_metric_summary(self, metrics_list):
"""Compute summary statistics for all metrics"""
metric_names = [
"ssim",
"psnr",
"mse",
"phash",
"color_hist_corr",
"sharpness1",
"sharpness2",
"sharpness_avg",
"sharpness_diff",
]
summary = {
"total_frames": len(metrics_list),
"valid_frames": len([m for m in metrics_list if m.get("ssim") is not None]),
}
# Compute statistics for each metric
for metric_name in metric_names:
valid_values = [
m[metric_name] for m in metrics_list if m.get(metric_name) is not None
]
if valid_values:
summary.update(
{
f"{metric_name}_mean": np.mean(valid_values),
f"{metric_name}_min": np.min(valid_values),
f"{metric_name}_max": np.max(valid_values),
f"{metric_name}_std": np.std(valid_values),
}
)
return summary
def create_individual_metric_plots(self, metrics_list, current_frame=0):
"""Create individual plots for each metric with frame on x-axis"""
if not metrics_list:
return None
# Extract frame indices
frame_indices = [m["frame_index"] for m in metrics_list]
# Helper function to get valid data
def get_valid_data(metric_name):
values = [m.get(metric_name) for m in metrics_list]
valid_indices = [i for i, v in enumerate(values) if v is not None]
valid_values = [values[i] for i in valid_indices]
valid_frames = [frame_indices[i] for i in valid_indices]
return valid_frames, valid_values
# Create individual plots for each metric
plots = {}
# 1. SSIM Plot
ssim_frames, ssim_values = get_valid_data("ssim")
if ssim_values:
# Calculate dynamic y-axis range for SSIM to highlight differences
min_ssim = min(ssim_values)
max_ssim = max(ssim_values)
ssim_range = max_ssim - min_ssim
# If there's very little variation, zoom in to show differences
if ssim_range < 0.05:
# For small variations, zoom in to show differences better
center = (min_ssim + max_ssim) / 2
padding = max(
0.02, ssim_range * 2
) # At least 0.02 range or 2x actual range
y_min = max(0, center - padding)
y_max = min(1, center + padding)
else:
# For larger variations, add some padding
padding = ssim_range * 0.15 # 15% padding
y_min = max(0, min_ssim - padding)
y_max = min(1, max_ssim + padding)
fig_ssim = go.Figure()
# Add area fill to emphasize the curve
fig_ssim.add_trace(
go.Scatter(
x=ssim_frames,
y=[y_min] * len(ssim_frames),
mode="lines",
line=dict(
color="rgba(0,0,255,0)"
), # Transparent line for area base
showlegend=False,
hoverinfo="skip",
)
)
fig_ssim.add_trace(
go.Scatter(
x=ssim_frames,
y=ssim_values,
mode="lines+markers",
name="SSIM",
line=dict(color="blue", width=3),
marker=dict(
size=6, color="blue", line=dict(color="darkblue", width=1)
),
hovertemplate="<b>Frame %{x}</b><br>SSIM: %{y:.5f}<extra></extra>",
fill="tonexty",
fillcolor="rgba(0,0,255,0.1)", # Light blue fill
)
)
if current_frame is not None:
fig_ssim.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
)
fig_ssim.update_layout(
height=300,
margin=dict(t=20, b=40, l=60, r=20),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
showlegend=False,
dragmode=False,
hovermode="x unified",
)
fig_ssim.update_xaxes(
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
)
fig_ssim.update_yaxes(
title_text="SSIM",
range=[y_min, y_max],
gridcolor="rgba(128,128,128,0.4)",
fixedrange=True,
)
plots["ssim"] = fig_ssim
# 2. PSNR Plot
psnr_frames, psnr_values = get_valid_data("psnr")
if psnr_values:
fig_psnr = go.Figure()
fig_psnr.add_trace(
go.Scatter(
x=psnr_frames,
y=psnr_values,
mode="lines+markers",
name="PSNR",
line=dict(color="green", width=3),
marker=dict(size=6),
hovertemplate="<b>Frame %{x}</b><br>PSNR: %{y:.2f} dB<extra></extra>",
)
)
if current_frame is not None:
fig_psnr.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
)
fig_psnr.update_layout(
height=300,
margin=dict(t=20, b=40, l=60, r=20),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
showlegend=False,
dragmode=False,
hovermode="x unified",
)
fig_psnr.update_xaxes(
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
)
fig_psnr.update_yaxes(
title_text="PSNR (dB)",
gridcolor="rgba(128,128,128,0.4)",
fixedrange=True,
)
plots["psnr"] = fig_psnr
# 3. MSE Plot
mse_frames, mse_values = get_valid_data("mse")
if mse_values:
fig_mse = go.Figure()
fig_mse.add_trace(
go.Scatter(
x=mse_frames,
y=mse_values,
mode="lines+markers",
name="MSE",
line=dict(color="red", width=3),
marker=dict(size=6),
hovertemplate="<b>Frame %{x}</b><br>MSE: %{y:.2f}<extra></extra>",
)
)
if current_frame is not None:
fig_mse.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
)
fig_mse.update_layout(
height=300,
margin=dict(t=20, b=40, l=60, r=20),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
showlegend=False,
dragmode=False,
hovermode="x unified",
)
fig_mse.update_xaxes(
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
)
fig_mse.update_yaxes(
title_text="MSE", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
)
plots["mse"] = fig_mse
# 4. pHash Plot
phash_frames, phash_values = get_valid_data("phash")
if phash_values:
fig_phash = go.Figure()
fig_phash.add_trace(
go.Scatter(
x=phash_frames,
y=phash_values,
mode="lines+markers",
name="pHash",
line=dict(color="purple", width=3),
marker=dict(size=6),
hovertemplate="<b>Frame %{x}</b><br>pHash: %{y:.4f}<extra></extra>",
)
)
if current_frame is not None:
fig_phash.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
)
fig_phash.update_layout(
height=300,
margin=dict(t=20, b=40, l=60, r=20),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
showlegend=False,
dragmode=False,
hovermode="x unified",
)
fig_phash.update_xaxes(
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
)
fig_phash.update_yaxes(
title_text="pHash Similarity",
gridcolor="rgba(128,128,128,0.4)",
fixedrange=True,
)
plots["phash"] = fig_phash
# 5. Color Histogram Correlation Plot
hist_frames, hist_values = get_valid_data("color_hist_corr")
if hist_values:
fig_hist = go.Figure()
fig_hist.add_trace(
go.Scatter(
x=hist_frames,
y=hist_values,
mode="lines+markers",
name="Color Histogram",
line=dict(color="orange", width=3),
marker=dict(size=6),
hovertemplate="<b>Frame %{x}</b><br>Color Histogram: %{y:.4f}<extra></extra>",
)
)
if current_frame is not None:
fig_hist.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
)
fig_hist.update_layout(
height=300,
margin=dict(t=20, b=40, l=60, r=20),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
showlegend=False,
dragmode=False,
hovermode="x unified",
)
fig_hist.update_xaxes(
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
)
fig_hist.update_yaxes(
title_text="Color Histogram Correlation",
gridcolor="rgba(128,128,128,0.4)",
fixedrange=True,
)
plots["color_hist"] = fig_hist
# 6. Sharpness Comparison Plot
sharp1_frames, sharp1_values = get_valid_data("sharpness1")
sharp2_frames, sharp2_values = get_valid_data("sharpness2")
if sharp1_values or sharp2_values:
fig_sharp = go.Figure()
if sharp1_values:
fig_sharp.add_trace(
go.Scatter(
x=sharp1_frames,
y=sharp1_values,
mode="lines+markers",
name="Video 1",
line=dict(color="darkgreen", width=3),
marker=dict(size=6),
hovertemplate="<b>Frame %{x}</b><br>Video 1 Sharpness: %{y:.1f}<extra></extra>",
)
)
if sharp2_values:
fig_sharp.add_trace(
go.Scatter(
x=sharp2_frames,
y=sharp2_values,
mode="lines+markers",
name="Video 2",
line=dict(color="darkblue", width=3),
marker=dict(size=6),
hovertemplate="<b>Frame %{x}</b><br>Video 2 Sharpness: %{y:.1f}<extra></extra>",
)
)
if current_frame is not None:
fig_sharp.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
)
fig_sharp.update_layout(
height=300,
margin=dict(t=20, b=40, l=60, r=20),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
showlegend=True,
legend=dict(
orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5
),
dragmode=False,
hovermode="x unified",
)
fig_sharp.update_xaxes(
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True
)
fig_sharp.update_yaxes(
title_text="Sharpness",
gridcolor="rgba(128,128,128,0.4)",
fixedrange=True,
)
plots["sharpness"] = fig_sharp
# 7. Overall Quality Score Plot (Combination of metrics)
# Calculate overall quality score by combining normalized metrics
if ssim_values and psnr_values and len(ssim_values) == len(psnr_values):
# Get data for metrics that contribute to overall score
phash_frames_overall, phash_values_overall = get_valid_data("phash")
# Ensure we have the same frames for all metrics
common_frames = set(ssim_frames) & set(psnr_frames)
if phash_values_overall:
common_frames = common_frames & set(phash_frames_overall)
common_frames = sorted(list(common_frames))
if common_frames:
# Extract values for common frames
ssim_common = [
ssim_values[ssim_frames.index(f)]
for f in common_frames
if f in ssim_frames
]
psnr_common = [
psnr_values[psnr_frames.index(f)]
for f in common_frames
if f in psnr_frames
]
# Normalize PSNR to 0-1 scale (typical range 0-50dB)
psnr_normalized = [min(p / 50.0, 1.0) for p in psnr_common]
# Start with SSIM and normalized PSNR
quality_components = [ssim_common, psnr_normalized]
component_names = ["SSIM", "PSNR"]
# Add pHash if available
if phash_values_overall:
phash_common = [
phash_values_overall[phash_frames_overall.index(f)]
for f in common_frames
if f in phash_frames_overall
]
if len(phash_common) == len(ssim_common):
quality_components.append(phash_common)
component_names.append("pHash")
# Calculate average across all components
overall_quality = []
for i in range(len(common_frames)):
frame_scores = [
component[i]
for component in quality_components
if i < len(component)
]
overall_quality.append(sum(frame_scores) / len(frame_scores))
# Calculate dynamic y-axis range to emphasize differences
min_quality = min(overall_quality)
max_quality = max(overall_quality)
quality_range = max_quality - min_quality
# If there's very little variation, use a smaller range to emphasize small differences
if quality_range < 0.08:
# For small variations, zoom in to show differences better
center = (min_quality + max_quality) / 2
padding = max(
0.04, quality_range * 2
) # At least 0.04 range or 2x the actual range
y_min = max(0, center - padding)
y_max = min(1, center + padding)
else:
# For larger variations, add some padding
padding = quality_range * 0.15 # 15% padding
y_min = max(0, min_quality - padding)
y_max = min(1, max_quality + padding)
fig_overall = go.Figure()
# Add area fill to emphasize the quality curve
fig_overall.add_trace(
go.Scatter(
x=common_frames,
y=[y_min] * len(common_frames),
mode="lines",
line=dict(
color="rgba(255,215,0,0)"
), # Transparent line for area base
showlegend=False,
hoverinfo="skip",
)
)
fig_overall.add_trace(
go.Scatter(
x=common_frames,
y=overall_quality,
mode="lines+markers",
name="Overall Quality",
line=dict(color="gold", width=4),
marker=dict(
size=8, color="gold", line=dict(color="orange", width=2)
),
hovertemplate="<b>Frame %{x}</b><br>Overall Quality: %{y:.5f}<br><i>Combined from: "
+ ", ".join(component_names)
+ "</i><extra></extra>",
fill="tonexty",
fillcolor="rgba(255,215,0,0.15)", # Semi-transparent gold fill
)
)
# Add quality threshold indicators if there are significant variations
if (
quality_range > 0.03
): # Show thresholds if there's meaningful variation
# Add reference lines for quality levels within the visible range
if y_min <= 0.9 <= y_max:
fig_overall.add_hline(
y=0.9,
line_dash="dot",
line_color="green",
line_width=1,
annotation_text="Excellent (0.9)",
annotation_position="right",
)
if y_min <= 0.8 <= y_max:
fig_overall.add_hline(
y=0.8,
line_dash="dot",
line_color="blue",
line_width=1,
annotation_text="Good (0.8)",
annotation_position="right",
)
if current_frame is not None:
fig_overall.add_vline(
x=current_frame,
line_dash="dash",
line_color="red",
line_width=2,
)
fig_overall.update_layout(
height=300,
margin=dict(t=20, b=40, l=60, r=20),
plot_bgcolor="rgba(0,0,0,0)",
paper_bgcolor="rgba(0,0,0,0)",
showlegend=False,
dragmode=False,
hovermode="x unified",
)
fig_overall.update_xaxes(
title_text="Frame",
gridcolor="rgba(128,128,128,0.4)",
fixedrange=True,
)
fig_overall.update_yaxes(
title_text="Overall Quality Score",
range=[y_min, y_max],
gridcolor="rgba(128,128,128,0.4)",
fixedrange=True,
)
plots["overall"] = fig_overall
return plots
def create_modern_plot(self, metrics_list, current_frame=0):
"""Create individual metric plots instead of combined dashboard"""
return self.create_individual_metric_plots(metrics_list, current_frame)
class VideoFrameComparator:
def __init__(self):
self.video1_frames = []
self.video2_frames = []
self.max_frames = 0
self.frame_metrics = FrameMetrics()
self.computed_metrics = []
self.metrics_summary = {}
def extract_frames(self, video_path):
"""Extract all frames from a video file or URL"""
if not video_path:
return []
# Check if it's a URL or local file
is_url = video_path.startswith(("http://", "https://"))
if not is_url and not os.path.exists(video_path):
print(f"Warning: Local video file not found: {video_path}")
return []
frames = []
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
print(
f"Error: Could not open video {'URL' if is_url else 'file'}: {video_path}"
)
return []
try:
frame_count = 0
while True:
ret, frame = cap.read()
if not ret:
break
# Convert BGR to RGB for display
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
frames.append(frame_rgb)
frame_count += 1
# Add progress feedback for URLs (which might be slower)
if is_url and frame_count % 30 == 0:
print(f"Processed {frame_count} frames from URL...")
except Exception as e:
print(f"Error processing video: {e}")
finally:
cap.release()
print(
f"Successfully extracted {len(frames)} frames from {'URL' if is_url else 'file'}: {video_path}"
)
return frames
def is_comparison_in_data_json(
self, video1_path, video2_path, json_file_path="data.json"
):
"""Check if this video comparison exists in data.json"""
try:
with open(json_file_path, "r") as f:
data = json.load(f)
for comparison in data.get("comparisons", []):
videos = comparison.get("videos", [])
if len(videos) == 2:
# Check both orders (works for both local files and URLs)
if (videos[0] == video1_path and videos[1] == video2_path) or (
videos[0] == video2_path and videos[1] == video1_path
):
return True
return False
except:
return False
def load_videos(self, video1_path, video2_path):
"""Load both videos and extract frames"""
if not video1_path and not video2_path:
return "Please upload at least one video.", 0, None, None, "", None
# Extract frames from both videos
self.video1_frames = self.extract_frames(video1_path) if video1_path else []
self.video2_frames = self.extract_frames(video2_path) if video2_path else []
# Determine maximum number of frames
self.max_frames = max(len(self.video1_frames), len(self.video2_frames))
if self.max_frames == 0:
return (
"No valid frames found in the uploaded videos.",
0,
None,
None,
"",
None,
)
# Compute metrics if both videos are present and not in data.json
metrics_info = ""
plots = None
if (
video1_path
and video2_path
and not self.is_comparison_in_data_json(video1_path, video2_path)
):
print("Computing comprehensive frame-by-frame metrics...")
self.computed_metrics = self.frame_metrics.compute_all_metrics(
self.video1_frames, self.video2_frames
)
self.metrics_summary = self.frame_metrics.get_metric_summary(
self.computed_metrics
)
# Build metrics info string
metrics_info = "\n\n📊 Computed Metrics Summary:\n"
metric_display = {
"ssim": ("SSIM", ".4f", "", "↑ Higher=Better"),
"psnr": ("PSNR", ".2f", " dB", "↑ Higher=Better"),
"mse": ("MSE", ".2f", "", "↓ Lower=Better"),
"phash": ("pHash", ".4f", "", "↑ Higher=Better"),
"color_hist_corr": ("Color Hist", ".4f", "", "↑ Higher=Better"),
"sharpness_avg": ("Sharpness", ".1f", "", "↑ Higher=Better"),
}
for metric_key, (
display_name,
format_str,
unit,
direction,
) in metric_display.items():
if self.metrics_summary.get(f"{metric_key}_mean") is not None:
mean_val = self.metrics_summary[f"{metric_key}_mean"]
std_val = self.metrics_summary[f"{metric_key}_std"]
metrics_info += f"{display_name}: μ={mean_val:{format_str}}{unit}, σ={std_val:{format_str}}{unit} ({direction})\n"
metrics_info += f"Valid Frames: {self.metrics_summary['valid_frames']}/{self.metrics_summary['total_frames']}"
# Generate initial plot
plots = self.frame_metrics.create_individual_metric_plots(
self.computed_metrics, 0
)
else:
self.computed_metrics = []
self.metrics_summary = {}
if video1_path and video2_path:
metrics_info = "\n\n📋 Note: This comparison is predefined in data.json (metrics not computed)"
# Get initial frames
frame1 = (
self.video1_frames[0]
if self.video1_frames
else np.zeros((480, 640, 3), dtype=np.uint8)
)
frame2 = (
self.video2_frames[0]
if self.video2_frames
else np.zeros((480, 640, 3), dtype=np.uint8)
)
status_msg = "Videos loaded successfully!\n"
status_msg += f"Video 1: {len(self.video1_frames)} frames\n"
status_msg += f"Video 2: {len(self.video2_frames)} frames\n"
status_msg += (
f"Use the slider to navigate through frames (0-{self.max_frames - 1})"
)
status_msg += metrics_info
return (
status_msg,
self.max_frames - 1,
frame1,
frame2,
self.get_current_frame_info(0),
plots,
)
def get_frames_at_index(self, frame_index):
"""Get frames at specific index from both videos"""
frame_index = int(frame_index)
# Get frame from video 1
if frame_index < len(self.video1_frames):
frame1 = self.video1_frames[frame_index]
else:
# Create a placeholder if frame doesn't exist
frame1 = np.zeros((480, 640, 3), dtype=np.uint8)
cv2.putText(
frame1,
f"Frame {frame_index} not available",
(50, 240),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(255, 255, 255),
2,
)
# Get frame from video 2
if frame_index < len(self.video2_frames):
frame2 = self.video2_frames[frame_index]
else:
# Create a placeholder if frame doesn't exist
frame2 = np.zeros((480, 640, 3), dtype=np.uint8)
cv2.putText(
frame2,
f"Frame {frame_index} not available",
(50, 240),
cv2.FONT_HERSHEY_SIMPLEX,
1,
(255, 255, 255),
2,
)
return frame1, frame2
def get_current_frame_info(self, frame_index):
"""Get information about the current frame including metrics"""
frame_index = int(frame_index)
info = f"Current Frame: {frame_index} / {self.max_frames - 1}"
# Add metrics info if available
if self.computed_metrics and frame_index < len(self.computed_metrics):
metrics = self.computed_metrics[frame_index]
# === COMPARISON METRICS (Between Videos) ===
comparison_metrics = []
# SSIM with quality assessment
if metrics.get("ssim") is not None:
ssim_val = metrics["ssim"]
if ssim_val >= 0.9:
quality = "🟢 Excellent"
elif ssim_val >= 0.8:
quality = "🔵 Good"
elif ssim_val >= 0.6:
quality = "🟡 Fair"
else:
quality = "🔴 Poor"
comparison_metrics.append(
f"SSIM: {ssim_val:.4f} ({quality} similarity)"
)
# PSNR with quality indicator
if metrics.get("psnr") is not None:
psnr_val = metrics["psnr"]
if psnr_val >= 40:
psnr_quality = "🟢 Excellent"
elif psnr_val >= 30:
psnr_quality = "🔵 Good"
elif psnr_val >= 20:
psnr_quality = "🟡 Fair"
else:
psnr_quality = "🔴 Poor"
comparison_metrics.append(
f"PSNR: {psnr_val:.1f}dB ({psnr_quality} signal quality)"
)
# MSE with quality indicator (lower is better)
if metrics.get("mse") is not None:
mse_val = metrics["mse"]
if mse_val <= 50:
mse_quality = "🟢 Very Similar"
elif mse_val <= 100:
mse_quality = "🔵 Similar"
elif mse_val <= 200:
mse_quality = "🟡 Moderately Different"
else:
mse_quality = "🔴 Very Different"
comparison_metrics.append(f"MSE: {mse_val:.1f} ({mse_quality})")
# pHash with quality indicator
if metrics.get("phash") is not None:
phash_val = metrics["phash"]
if phash_val >= 0.95:
phash_quality = "🟢 Nearly Identical"
elif phash_val >= 0.9:
phash_quality = "🔵 Very Similar"
elif phash_val >= 0.8:
phash_quality = "🟡 Somewhat Similar"
else:
phash_quality = "🔴 Different"
comparison_metrics.append(
f"pHash: {phash_val:.3f} ({phash_quality} perceptually)"
)
# Color Histogram Correlation
if metrics.get("color_hist_corr") is not None:
color_val = metrics["color_hist_corr"]
if color_val >= 0.9:
color_quality = "🟢 Very Similar Colors"
elif color_val >= 0.8:
color_quality = "🔵 Similar Colors"
elif color_val >= 0.6:
color_quality = "🟡 Moderate Color Diff"
else:
color_quality = "🔴 Different Colors"
comparison_metrics.append(f"Color: {color_val:.3f} ({color_quality})")
# Add comparison metrics to info
if comparison_metrics:
info += "\n📊 Comparison Analysis: " + " | ".join(comparison_metrics)
# === INDIVIDUAL VIDEO QUALITY ===
individual_metrics = []
# Individual Sharpness for each video
if metrics.get("sharpness1") is not None:
sharp1 = metrics["sharpness1"]
if sharp1 >= 200:
sharp1_quality = "🟢 Sharp"
elif sharp1 >= 100:
sharp1_quality = "🔵 Moderate"
elif sharp1 >= 50:
sharp1_quality = "🟡 Soft"
else:
sharp1_quality = "🔴 Blurry"
individual_metrics.append(
f"V1 Sharpness: {sharp1:.0f} ({sharp1_quality})"
)
if metrics.get("sharpness2") is not None:
sharp2 = metrics["sharpness2"]
if sharp2 >= 200:
sharp2_quality = "🟢 Sharp"
elif sharp2 >= 100:
sharp2_quality = "🔵 Moderate"
elif sharp2 >= 50:
sharp2_quality = "🟡 Soft"
else:
sharp2_quality = "🔴 Blurry"
individual_metrics.append(
f"V2 Sharpness: {sharp2:.0f} ({sharp2_quality})"
)
# Sharpness comparison
if (
metrics.get("sharpness1") is not None
and metrics.get("sharpness2") is not None
):
sharp1 = metrics["sharpness1"]
sharp2 = metrics["sharpness2"]
# Calculate difference percentage
diff_pct = abs(sharp1 - sharp2) / max(sharp1, sharp2) * 100
# Determine significance with clearer labels
if diff_pct > 20:
significance = "🔴 MAJOR difference"
elif diff_pct > 10:
significance = "🟡 MODERATE difference"
elif diff_pct > 5:
significance = "🔵 MINOR difference"
else:
significance = "🟢 NEGLIGIBLE difference"
# Determine which is sharper
if sharp1 > sharp2:
comparison = "V1 is sharper"
elif sharp2 > sharp1:
comparison = "V2 is sharper"
else:
comparison = "Equal sharpness"
individual_metrics.append(f"Sharpness: {comparison} ({significance})")
# Add individual metrics to info
if individual_metrics:
info += "\n🎯 Individual Quality: " + " | ".join(individual_metrics)
# === OVERALL QUALITY ASSESSMENT ===
# Calculate combined quality score from multiple metrics
quality_score = 0
quality_count = 0
metric_contributions = []
# SSIM contribution
if metrics.get("ssim") is not None:
quality_score += metrics["ssim"]
quality_count += 1
metric_contributions.append(f"SSIM({metrics['ssim']:.3f})")
# PSNR contribution (normalized to 0-1 scale)
if metrics.get("psnr") is not None:
psnr_norm = min(metrics["psnr"] / 50, 1.0)
quality_score += psnr_norm
quality_count += 1
metric_contributions.append(f"PSNR({psnr_norm:.3f})")
# pHash contribution
if metrics.get("phash") is not None:
quality_score += metrics["phash"]
quality_count += 1
metric_contributions.append(f"pHash({metrics['phash']:.3f})")
if quality_count > 0:
avg_quality = quality_score / quality_count
# Add overall assessment with formula explanation
if avg_quality >= 0.9:
overall = "✨ Excellent Overall"
quality_indicator = "🟢"
elif avg_quality >= 0.8:
overall = "✅ Good Overall"
quality_indicator = "🔵"
elif avg_quality >= 0.6:
overall = "⚠️ Fair Overall"
quality_indicator = "🟡"
else:
overall = "❌ Poor Overall"
quality_indicator = "🔴"
# Calculate quality variation across all frames to show differences
quality_variation = ""
if self.computed_metrics and len(self.computed_metrics) > 1:
# Calculate overall quality for all frames to show variation
all_quality_scores = []
for metric in self.computed_metrics:
frame_quality = 0
frame_quality_count = 0
if metric.get("ssim") is not None:
frame_quality += metric["ssim"]
frame_quality_count += 1
if metric.get("psnr") is not None:
frame_quality += min(metric["psnr"] / 50, 1.0)
frame_quality_count += 1
if metric.get("phash") is not None:
frame_quality += metric["phash"]
frame_quality_count += 1
if frame_quality_count > 0:
all_quality_scores.append(
frame_quality / frame_quality_count
)
if len(all_quality_scores) > 1:
min_qual = min(all_quality_scores)
max_qual = max(all_quality_scores)
variation = max_qual - min_qual
if variation > 0.08:
quality_variation = (
f" | 📊 High Variation (Δ{variation:.4f})"
)
elif variation > 0.04:
quality_variation = (
f" | 📊 Moderate Variation (Δ{variation:.4f})"
)
elif variation > 0.02:
quality_variation = (
f" | 📊 Low Variation (Δ{variation:.4f})"
)
else:
quality_variation = (
f" | 📊 Stable Quality (Δ{variation:.4f})"
)
info += f"\n🎯 Overall Quality: {quality_indicator} {avg_quality:.5f} ({overall}){quality_variation}"
info += f"\n 💡 Formula: Average of {' + '.join(metric_contributions)} = {avg_quality:.5f}"
return info
def get_updated_plot(self, frame_index):
"""Get updated plot with current frame highlighted"""
if self.computed_metrics:
return self.frame_metrics.create_individual_metric_plots(
self.computed_metrics, int(frame_index)
)
return None
def load_examples_from_json(json_file_path="data.json"):
"""Load example video pairs from JSON configuration file"""
try:
with open(json_file_path, "r") as f:
data = json.load(f)
examples = []
# Extract video pairs from the comparisons
for comparison in data.get("comparisons", []):
videos = comparison.get("videos", [])
# Validate that video files/URLs exist or are accessible
valid_videos = []
for video_path in videos:
if video_path: # Check if not empty/None
# Check if it's a URL
if video_path.startswith(("http://", "https://")):
# For URLs, we'll assume they're valid (can't easily check without downloading)
# OpenCV will handle the validation during actual loading
valid_videos.append(video_path)
print(f"Added video URL: {video_path}")
else:
# Convert to absolute path for local files
abs_path = os.path.abspath(video_path)
if os.path.exists(abs_path):
valid_videos.append(abs_path)
print(f"Added local video file: {abs_path}")
elif os.path.exists(video_path):
# Try relative path as fallback
valid_videos.append(video_path)
print(f"Added local video file: {video_path}")
else:
print(
f"Warning: Local video file not found: {video_path} (abs: {abs_path})"
)
# Add to examples if we have valid videos
if len(valid_videos) == 2:
examples.append(valid_videos)
elif len(valid_videos) == 1:
# Single video example (compare with None)
examples.append([valid_videos[0], None])
return examples
except FileNotFoundError:
print(f"Warning: {json_file_path} not found. No examples will be loaded.")
return []
except json.JSONDecodeError as e:
print(f"Error parsing {json_file_path}: {e}")
return []
except Exception as e:
print(f"Error loading examples: {e}")
return []
def get_all_videos_from_json(json_file_path="data.json"):
"""Get list of all unique videos mentioned in the JSON file"""
try:
with open(json_file_path, "r") as f:
data = json.load(f)
all_videos = set()
# Extract all unique video paths/URLs from comparisons
for comparison in data.get("comparisons", []):
videos = comparison.get("videos", [])
for video_path in videos:
if video_path: # Only add non-empty paths
# Check if it's a URL or local file
if video_path.startswith(("http://", "https://")):
# For URLs, add them directly
all_videos.add(video_path)
elif os.path.exists(video_path):
# For local files, check existence before adding
all_videos.add(video_path)
return sorted(list(all_videos))
except FileNotFoundError:
print(f"Warning: {json_file_path} not found.")
return []
except json.JSONDecodeError as e:
print(f"Error parsing {json_file_path}: {e}")
return []
except Exception as e:
print(f"Error loading videos: {e}")
return []
def create_app():
comparator = VideoFrameComparator()
example_pairs = load_examples_from_json()
print(f"DEBUG: Loaded {len(example_pairs)} example pairs")
for i, pair in enumerate(example_pairs):
print(f" Example {i + 1}: {pair}")
all_videos = get_all_videos_from_json()
with gr.Blocks(
title="Frame Arena - Video Frame Comparator",
# theme=gr.themes.Soft(),
css="""
/* Ensure plots adapt to theme */
.plotly .main-svg {
color: var(--body-text-color, #000) !important;
}
/* Grid visibility for both themes */
.plotly .gridlayer .xgrid, .plotly .gridlayer .ygrid {
stroke-opacity: 0.4 !important;
}
/* Axis text color adaptation */
.plotly .xtick text, .plotly .ytick text {
fill: var(--body-text-color, #000) !important;
}
/* Axis title color adaptation - multiple selectors for better coverage */
.plotly .g-xtitle, .plotly .g-ytitle,
.plotly .xtitle, .plotly .ytitle,
.plotly text[class*="xtitle"], .plotly text[class*="ytitle"],
.plotly .infolayer .g-xtitle, .plotly .infolayer .g-ytitle {
fill: var(--body-text-color, #000) !important;
}
/* Additional axis title selectors */
.plotly .subplot .xtitle, .plotly .subplot .ytitle,
.plotly .cartesianlayer .xtitle, .plotly .cartesianlayer .ytitle {
fill: var(--body-text-color, #000) !important;
}
/* SVG text elements in plots */
.plotly svg text {
fill: var(--body-text-color, #000) !important;
}
/* Legend text color */
.plotly .legendtext, .plotly .legend text {
fill: var(--body-text-color, #000) !important;
}
/* Hover label adaptation */
.plotly .hoverlayer .hovertext, .plotly .hovertext {
fill: var(--body-text-color, #000) !important;
color: var(--body-text-color, #000) !important;
}
/* Annotation text */
.plotly .annotation-text, .plotly .annotation {
fill: var(--body-text-color, #000) !important;
}
/* Disable plot interactions except hover */
.plotly .modebar {
display: none !important;
}
.plotly .plot-container .plotly {
pointer-events: none !important;
}
.plotly .plot-container .plotly .hoverlayer {
pointer-events: auto !important;
}
.plotly .plot-container .plotly .hovertext {
pointer-events: auto !important;
}
""",
# js="""
# function updatePlotColors() {
# // Get current theme color
# const bodyStyle = getComputedStyle(document.body);
# const textColor = bodyStyle.getPropertyValue('--body-text-color') ||
# bodyStyle.color ||
# (bodyStyle.backgroundColor === 'rgb(255, 255, 255)' ? '#000000' : '#ffffff');
# // Update all plot text elements
# document.querySelectorAll('.plotly svg text').forEach(text => {
# text.setAttribute('fill', textColor);
# });
# }
# // Update colors on load and theme change
# window.addEventListener('load', updatePlotColors);
# // Watch for theme changes
# const observer = new MutationObserver(updatePlotColors);
# observer.observe(document.body, {
# attributes: true,
# attributeFilter: ['class', 'style']
# });
# // Also watch for CSS variable changes
# if (window.CSS && CSS.supports('color', 'var(--body-text-color)')) {
# const style = document.createElement('style');
# style.textContent = `
# .plotly svg text {
# fill: var(--body-text-color, currentColor) !important;
# }
# `;
# document.head.appendChild(style);
# }
# """,
) as app:
gr.Markdown("""
# 🎬 Frame Arena: Frame by frame comparisons of any videos
> 🎉 This tool has been created to celebrate our Wan 2.2 [text-to-video](https://replicate.com/wan-video/wan-2.2-t2v-480p-fast) and [image-to-video](https://replicate.com/wan-video/wan-2.2-i2v-a14b) endpoints on Replicate. Want to know more? Check out [our blog](https://www.wan22.com/blog/video-optimization-on-replicate)!
- Upload videos in common formats with the same number of frames (MP4, AVI, MOV, etc.) or use URLs
- **7 Quality Metrics**: SSIM, PSNR, MSE, pHash, Color Histogram, Sharpness + Overall Quality
- **Individual Visualization**: Each metric gets its own dedicated plot
- **Real-time Analysis**: Navigate frames with live metric updates
- **Smart Comparisons**: Understand differences between videos per metric
**Perfect for**: Analyzing compression effects, processing artifacts, visual quality assessment, and compression algorithm comparisons.
""")
with gr.Row():
with gr.Column():
gr.Markdown("### Video 1")
video1_input = gr.File(
label="Upload Video 1",
file_types=[
".mp4",
".avi",
".mov",
".mkv",
".wmv",
".flv",
".webm",
],
type="filepath",
)
with gr.Column():
gr.Markdown("### Video 2")
video2_input = gr.File(
label="Upload Video 2",
file_types=[
".mp4",
".avi",
".mov",
".mkv",
".wmv",
".flv",
".webm",
],
type="filepath",
)
# Add examples at the top for better UX
if example_pairs:
gr.Markdown("### 📁 Example Video Comparisons")
examples_component_top = gr.Examples(
examples=example_pairs,
inputs=[video1_input, video2_input],
label="Click any example to load video pairs:",
examples_per_page=10,
run_on_click=False, # We'll handle this manually
)
load_btn = gr.Button("🔄 Load Videos", variant="primary", size="lg")
# Frame comparison section (initially hidden)
frame_display = gr.Row(visible=False)
with frame_display:
with gr.Column():
gr.Markdown("### Video 1 - Current Frame")
frame1_output = gr.Image(
label="Video 1 Frame", type="numpy", interactive=False, height=400
)
with gr.Column():
gr.Markdown("### Video 2 - Current Frame")
frame2_output = gr.Image(
label="Video 2 Frame", type="numpy", interactive=False, height=400
)
# Frame navigation (initially hidden) - moved underneath frames
frame_controls = gr.Row(visible=False)
with frame_controls:
frame_slider = gr.Slider(
minimum=0,
maximum=0,
step=1,
value=0,
label="Frame Number",
interactive=True,
)
# Comprehensive metrics visualization (initially hidden)
metrics_section = gr.Row(visible=False)
with metrics_section:
with gr.Column():
gr.Markdown("### 📊 Metric Analysis")
# Overall quality plot
with gr.Row():
overall_plot = gr.Plot(
label="Overall Quality (Combined Metric [SSIM + normalized_PSNR + pHash])",
show_label=True,
)
# Frame info moved below overall quality plot
frame_info = gr.Textbox(
label="Frame Information & Metrics",
interactive=False,
value="",
lines=3,
)
# Individual metric plots
with gr.Row():
ssim_plot = gr.Plot(label="SSIM", show_label=True)
psnr_plot = gr.Plot(label="PSNR", show_label=True)
with gr.Row():
mse_plot = gr.Plot(label="MSE", show_label=True)
phash_plot = gr.Plot(label="pHash", show_label=True)
with gr.Row():
color_plot = gr.Plot(label="Color Histogram", show_label=True)
sharpness_plot = gr.Plot(label="Sharpness", show_label=True)
# Add comprehensive usage guide
with gr.Accordion("📖 Usage Guide & Metrics Reference", open=False):
with gr.Row() as info_section:
with gr.Column():
status_output = gr.Textbox(
label="Status", interactive=False, lines=8
)
with gr.Column():
gr.Markdown("""
### 📊 Metrics Explained
- **SSIM**: Structural Similarity (1.0 = identical structure, 0.0 = completely different)
- **PSNR**: Peak Signal-to-Noise Ratio in dB (higher = better quality, less noise)
- **MSE**: Mean Squared Error (lower = more similar pixel values)
- **pHash**: Perceptual Hash similarity (1.0 = visually identical)
- **Color Histogram**: Color distribution correlation (1.0 = identical color patterns)
- **Sharpness**: Laplacian variance per video (higher = sharper/more detailed images)
- **Overall Quality**: Combined metric averaging SSIM, normalized PSNR, and pHash (when available)
""")
with gr.Row():
with gr.Column():
gr.Markdown("""
### 🎯 Quality Assessment Scale (Research-Based Thresholds)
**SSIM Scale** (based on human perception studies):
- 🟢 **Excellent (≥0.9)**: Visually indistinguishable differences
- 🔵 **Good (≥0.8)**: Minor visible differences, still high quality
- 🟡 **Fair (≥0.6)**: Noticeable differences, acceptable quality
- 🔴 **Poor (<0.6)**: Significant visible artifacts and differences
**PSNR Scale** (standard video quality benchmarks):
- 🟢 **Excellent (≥40dB)**: Professional broadcast quality
- 🔵 **Good (≥30dB)**: High consumer video quality
- 🟡 **Fair (≥20dB)**: Acceptable for web streaming
- 🔴 **Poor (<20dB)**: Low quality with visible compression artifacts
**MSE Scale** (pixel difference thresholds):
- 🟢 **Very Similar (≤50)**: Minimal pixel-level differences
- 🔵 **Similar (≤100)**: Small differences, good quality preservation
- 🟡 **Moderately Different (≤200)**: Noticeable but acceptable differences
- 🔴 **Very Different (>200)**: Significant pixel-level changes
""")
with gr.Column():
gr.Markdown("""
### 🔍 Understanding Comparisons
**Comparison Analysis**: Shows how similar/different the videos are
- Most metrics indicate **similarity** - not which video "wins"
- Higher SSIM/PSNR/pHash/Color = more similar videos
- Lower MSE = more similar videos
**Individual Quality**: Shows the quality of each video separately
- Sharpness comparison shows which video has more detail
- Significance levels: 🔴 MAJOR (>20%), 🟡 MODERATE (10-20%), 🔵 MINOR (5-10%), 🟢 NEGLIGIBLE (<5%)
**Overall Quality**: Combines multiple metrics to provide a single similarity score
- **Formula**: Average of [SSIM + normalized_PSNR + pHash]
- **PSNR Normalization**: PSNR values are divided by 50dB and capped at 1.0
- **Range**: 0.0 to 1.0 (higher = more similar videos overall)
- **Purpose**: Provides a single metric when you need one overall assessment
- **Limitation**: Different metrics may disagree; check individual metrics for details
""")
# Connect examples to auto-loading
if example_pairs:
# Use a manual approach to handle examples click
def examples_manual_handler(video1, video2):
print("DEBUG: Examples clicked manually!")
return load_videos_handler(video1, video2)
# Since we can't directly attach to examples, we'll use the change events
# Event handlers
def load_videos_handler(video1, video2):
print(
f"DEBUG: load_videos_handler called with video1={video1}, video2={video2}"
)
status, max_frames, frame1, frame2, info, plots = comparator.load_videos(
video1, video2
)
# Update slider
slider_update = gr.Slider(
minimum=0,
maximum=max_frames,
step=1,
value=0,
interactive=True if max_frames > 0 else False,
)
# Show/hide sections based on whether videos were loaded successfully
videos_loaded = max_frames > 0
# Extract individual plots from the plots dictionary
ssim_fig = plots.get("ssim") if plots else None
psnr_fig = plots.get("psnr") if plots else None
mse_fig = plots.get("mse") if plots else None
phash_fig = plots.get("phash") if plots else None
color_fig = plots.get("color_hist") if plots else None
sharpness_fig = plots.get("sharpness") if plots else None
overall_fig = plots.get("overall") if plots else None
return (
status, # status_output
slider_update, # frame_slider
frame1, # frame1_output
frame2, # frame2_output
info, # frame_info
ssim_fig, # ssim_plot
psnr_fig, # psnr_plot
mse_fig, # mse_plot
phash_fig, # phash_plot
color_fig, # color_plot
sharpness_fig, # sharpness_plot
overall_fig, # overall_plot
gr.Row(visible=videos_loaded), # frame_controls
gr.Row(visible=videos_loaded), # frame_display
gr.Row(visible=videos_loaded and plots is not None), # metrics_section
gr.Row(visible=videos_loaded), # info_section
)
def update_frames(frame_index):
if comparator.max_frames == 0:
return (
None,
None,
"No videos loaded",
None,
None,
None,
None,
None,
None,
)
frame1, frame2 = comparator.get_frames_at_index(frame_index)
info = comparator.get_current_frame_info(frame_index)
plots = comparator.get_updated_plot(frame_index)
# Extract individual plots from the plots dictionary
ssim_fig = plots.get("ssim") if plots else None
psnr_fig = plots.get("psnr") if plots else None
mse_fig = plots.get("mse") if plots else None
phash_fig = plots.get("phash") if plots else None
color_fig = plots.get("color_hist") if plots else None
sharpness_fig = plots.get("sharpness") if plots else None
overall_fig = plots.get("overall") if plots else None
return (
frame1,
frame2,
info,
ssim_fig,
psnr_fig,
mse_fig,
phash_fig,
color_fig,
sharpness_fig,
overall_fig,
)
# Auto-load when examples populate the inputs
def auto_load_when_examples_change(video1, video2):
print(
f"DEBUG: auto_load_when_examples_change called with video1={video1}, video2={video2}"
)
# Only auto-load if both inputs are provided (from examples)
if video1 and video2:
print("DEBUG: Both videos present, calling load_videos_handler")
return load_videos_handler(video1, video2)
# If only one or no videos, return default empty state
print("DEBUG: Not both videos present, returning default state")
return (
"Please upload videos or select an example", # status_output
gr.Slider(
minimum=0, maximum=0, step=1, value=0, interactive=False
), # frame_slider
None, # frame1_output
None, # frame2_output
"", # frame_info
None, # ssim_plot
None, # psnr_plot
None, # mse_plot
None, # phash_plot
None, # color_plot
None, # sharpness_plot
None, # overall_plot
gr.Row(visible=False), # frame_controls
gr.Row(visible=False), # frame_display
gr.Row(visible=False), # metrics_section
gr.Row(visible=False), # info_section
)
# Enhanced auto-load function with more debug info
def enhanced_auto_load(video1, video2):
print(f"DEBUG: Input change detected! video1={video1}, video2={video2}")
return auto_load_when_examples_change(video1, video2)
# Auto-load when both video inputs change (triggered by examples)
video1_input.change(
fn=enhanced_auto_load,
inputs=[video1_input, video2_input],
outputs=[
status_output,
frame_slider,
frame1_output,
frame2_output,
frame_info,
ssim_plot,
psnr_plot,
mse_plot,
phash_plot,
color_plot,
sharpness_plot,
overall_plot,
frame_controls,
frame_display,
metrics_section,
info_section,
],
)
video2_input.change(
fn=enhanced_auto_load,
inputs=[video1_input, video2_input],
outputs=[
status_output,
frame_slider,
frame1_output,
frame2_output,
frame_info,
ssim_plot,
psnr_plot,
mse_plot,
phash_plot,
color_plot,
sharpness_plot,
overall_plot,
frame_controls,
frame_display,
metrics_section,
info_section,
],
)
# Manual load button event handler with debug
def debug_load_videos_handler(video1, video2):
print(f"DEBUG: Load button clicked! video1={video1}, video2={video2}")
return load_videos_handler(video1, video2)
load_btn.click(
fn=debug_load_videos_handler,
inputs=[video1_input, video2_input],
outputs=[
status_output,
frame_slider,
frame1_output,
frame2_output,
frame_info,
ssim_plot,
psnr_plot,
mse_plot,
phash_plot,
color_plot,
sharpness_plot,
overall_plot,
frame_controls,
frame_display,
metrics_section,
info_section,
],
)
frame_slider.change(
fn=update_frames,
inputs=[frame_slider],
outputs=[
frame1_output,
frame2_output,
frame_info,
ssim_plot,
psnr_plot,
mse_plot,
phash_plot,
color_plot,
sharpness_plot,
overall_plot,
],
)
return app
def main():
app = create_app()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
)
if __name__ == "__main__":
main()