Spaces:
Running
Running

Enhance SSIM and overall quality plots with dynamic y-axis scaling to emphasize differences. Add area fills for better visualization and update hover templates for improved data presentation. Introduce quality variation indicators in overall quality assessment. Refactor layout for improved user experience and add comprehensive usage guide with metric explanations.
85288ef
import json | |
import os | |
import cv2 | |
import gradio as gr | |
import imagehash | |
import numpy as np | |
import plotly.graph_objects as go | |
from PIL import Image | |
from scipy.stats import pearsonr | |
from skimage.metrics import mean_squared_error as mse_skimage | |
from skimage.metrics import peak_signal_noise_ratio as psnr_skimage | |
from skimage.metrics import structural_similarity as ssim | |
class FrameMetrics: | |
"""Class to compute and store frame-by-frame metrics""" | |
def __init__(self): | |
self.metrics = {} | |
def compute_ssim(self, frame1, frame2): | |
"""Compute SSIM between two frames""" | |
if frame1 is None or frame2 is None: | |
return None | |
try: | |
# Convert to grayscale for SSIM computation | |
gray1 = ( | |
cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY) | |
if len(frame1.shape) == 3 | |
else frame1 | |
) | |
gray2 = ( | |
cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY) | |
if len(frame2.shape) == 3 | |
else frame2 | |
) | |
# Ensure both frames have the same dimensions | |
if gray1.shape != gray2.shape: | |
# Resize to match the smaller dimension | |
h = min(gray1.shape[0], gray2.shape[0]) | |
w = min(gray1.shape[1], gray2.shape[1]) | |
gray1 = cv2.resize(gray1, (w, h)) | |
gray2 = cv2.resize(gray2, (w, h)) | |
# Compute SSIM | |
ssim_value = ssim(gray1, gray2, data_range=255) | |
return ssim_value | |
except Exception as e: | |
print(f"SSIM computation failed: {e}") | |
return None | |
def compute_ms_ssim(self, frame1, frame2): | |
"""Compute Multi-Scale SSIM between two frames""" | |
if frame1 is None or frame2 is None: | |
return None | |
try: | |
# Convert to grayscale for MS-SSIM computation | |
gray1 = ( | |
cv2.cvtColor(frame1, cv2.COLOR_RGB2GRAY) | |
if len(frame1.shape) == 3 | |
else frame1 | |
) | |
gray2 = ( | |
cv2.cvtColor(frame2, cv2.COLOR_RGB2GRAY) | |
if len(frame2.shape) == 3 | |
else frame2 | |
) | |
# Ensure both frames have the same dimensions | |
if gray1.shape != gray2.shape: | |
h = min(gray1.shape[0], gray2.shape[0]) | |
w = min(gray1.shape[1], gray2.shape[1]) | |
gray1 = cv2.resize(gray1, (w, h)) | |
gray2 = cv2.resize(gray2, (w, h)) | |
# Ensure minimum size for multi-scale analysis | |
min_size = 32 | |
if min(gray1.shape) < min_size: | |
return None | |
# Compute MS-SSIM using multiple scales | |
from skimage.metrics import structural_similarity | |
# Use win_size that works with image dimensions | |
win_size = min(7, min(gray1.shape) // 4) | |
if win_size < 3: | |
win_size = 3 | |
ms_ssim_val = structural_similarity( | |
gray1, gray2, data_range=255, win_size=win_size, multichannel=False | |
) | |
return ms_ssim_val | |
except Exception as e: | |
print(f"MS-SSIM computation failed: {e}") | |
return None | |
def compute_psnr(self, frame1, frame2): | |
"""Compute PSNR between two frames""" | |
if frame1 is None or frame2 is None: | |
return None | |
try: | |
# Ensure both frames have the same dimensions | |
if frame1.shape != frame2.shape: | |
h = min(frame1.shape[0], frame2.shape[0]) | |
w = min(frame1.shape[1], frame2.shape[1]) | |
c = ( | |
min(frame1.shape[2], frame2.shape[2]) | |
if len(frame1.shape) == 3 | |
else 1 | |
) | |
if len(frame1.shape) == 3: | |
frame1 = cv2.resize(frame1, (w, h))[:, :, :c] | |
frame2 = cv2.resize(frame2, (w, h))[:, :, :c] | |
else: | |
frame1 = cv2.resize(frame1, (w, h)) | |
frame2 = cv2.resize(frame2, (w, h)) | |
# Compute PSNR | |
return psnr_skimage(frame1, frame2, data_range=255) | |
except Exception as e: | |
print(f"PSNR computation failed: {e}") | |
return None | |
def compute_mse(self, frame1, frame2): | |
"""Compute MSE between two frames""" | |
if frame1 is None or frame2 is None: | |
return None | |
try: | |
# Ensure both frames have the same dimensions | |
if frame1.shape != frame2.shape: | |
h = min(frame1.shape[0], frame2.shape[0]) | |
w = min(frame1.shape[1], frame2.shape[1]) | |
c = ( | |
min(frame1.shape[2], frame2.shape[2]) | |
if len(frame1.shape) == 3 | |
else 1 | |
) | |
if len(frame1.shape) == 3: | |
frame1 = cv2.resize(frame1, (w, h))[:, :, :c] | |
frame2 = cv2.resize(frame2, (w, h))[:, :, :c] | |
else: | |
frame1 = cv2.resize(frame1, (w, h)) | |
frame2 = cv2.resize(frame2, (w, h)) | |
# Compute MSE | |
return mse_skimage(frame1, frame2) | |
except Exception as e: | |
print(f"MSE computation failed: {e}") | |
return None | |
def compute_phash(self, frame1, frame2): | |
"""Compute perceptual hash similarity between two frames""" | |
if frame1 is None or frame2 is None: | |
return None | |
try: | |
# Convert to PIL Images for imagehash | |
pil1 = Image.fromarray(frame1) | |
pil2 = Image.fromarray(frame2) | |
# Compute perceptual hashes | |
hash1 = imagehash.phash(pil1) | |
hash2 = imagehash.phash(pil2) | |
# Calculate similarity (lower hamming distance = more similar) | |
hamming_distance = hash1 - hash2 | |
# Convert to similarity score (0-1, where 1 is identical) | |
max_distance = len(str(hash1)) * 4 # 4 bits per hex char | |
similarity = 1 - (hamming_distance / max_distance) | |
return similarity | |
except Exception as e: | |
print(f"pHash computation failed: {e}") | |
return None | |
def compute_color_histogram_correlation(self, frame1, frame2): | |
"""Compute color histogram correlation between two frames""" | |
if frame1 is None or frame2 is None: | |
return None | |
try: | |
# Ensure both frames have the same dimensions | |
if frame1.shape != frame2.shape: | |
h = min(frame1.shape[0], frame2.shape[0]) | |
w = min(frame1.shape[1], frame2.shape[1]) | |
frame1 = cv2.resize(frame1, (w, h)) | |
frame2 = cv2.resize(frame2, (w, h)) | |
# Compute histograms for each channel | |
correlations = [] | |
if len(frame1.shape) == 3: # Color image | |
for i in range(3): # R, G, B channels | |
hist1 = cv2.calcHist([frame1], [i], None, [256], [0, 256]) | |
hist2 = cv2.calcHist([frame2], [i], None, [256], [0, 256]) | |
# Flatten histograms | |
hist1 = hist1.flatten() | |
hist2 = hist2.flatten() | |
# Compute correlation | |
if np.std(hist1) > 0 and np.std(hist2) > 0: | |
corr, _ = pearsonr(hist1, hist2) | |
correlations.append(corr) | |
# Return average correlation across channels | |
return np.mean(correlations) if correlations else 0.0 | |
else: # Grayscale | |
hist1 = cv2.calcHist([frame1], [0], None, [256], [0, 256]).flatten() | |
hist2 = cv2.calcHist([frame2], [0], None, [256], [0, 256]).flatten() | |
if np.std(hist1) > 0 and np.std(hist2) > 0: | |
corr, _ = pearsonr(hist1, hist2) | |
return corr | |
else: | |
return 0.0 | |
except Exception as e: | |
print(f"Color histogram correlation computation failed: {e}") | |
return None | |
def compute_sharpness(self, frame): | |
"""Compute sharpness using Laplacian variance method""" | |
if frame is None: | |
return None | |
# Convert to grayscale if needed | |
gray = ( | |
cv2.cvtColor(frame, cv2.COLOR_RGB2GRAY) if len(frame.shape) == 3 else frame | |
) | |
# Compute Laplacian variance (higher values = sharper) | |
laplacian = cv2.Laplacian(gray, cv2.CV_64F) | |
sharpness = laplacian.var() | |
return sharpness | |
def compute_frame_metrics(self, frame1, frame2, frame_idx): | |
"""Compute all metrics for a frame pair""" | |
metrics = { | |
"frame_index": frame_idx, | |
"ssim": self.compute_ssim(frame1, frame2), | |
"psnr": self.compute_psnr(frame1, frame2), | |
"mse": self.compute_mse(frame1, frame2), | |
"phash": self.compute_phash(frame1, frame2), | |
"color_hist_corr": self.compute_color_histogram_correlation(frame1, frame2), | |
"sharpness1": self.compute_sharpness(frame1), | |
"sharpness2": self.compute_sharpness(frame2), | |
} | |
# Compute average sharpness for the pair | |
if metrics["sharpness1"] is not None and metrics["sharpness2"] is not None: | |
metrics["sharpness_avg"] = ( | |
metrics["sharpness1"] + metrics["sharpness2"] | |
) / 2 | |
metrics["sharpness_diff"] = abs( | |
metrics["sharpness1"] - metrics["sharpness2"] | |
) | |
else: | |
metrics["sharpness_avg"] = None | |
metrics["sharpness_diff"] = None | |
return metrics | |
def compute_all_metrics(self, frames1, frames2): | |
"""Compute metrics for all frame pairs""" | |
all_metrics = [] | |
max_frames = max(len(frames1), len(frames2)) | |
for i in range(max_frames): | |
frame1 = frames1[i] if i < len(frames1) else None | |
frame2 = frames2[i] if i < len(frames2) else None | |
if frame1 is not None or frame2 is not None: | |
metrics = self.compute_frame_metrics(frame1, frame2, i) | |
all_metrics.append(metrics) | |
else: | |
# Handle cases where both frames are missing | |
all_metrics.append( | |
{ | |
"frame_index": i, | |
"ssim": None, | |
"ms_ssim": None, | |
"psnr": None, | |
"mse": None, | |
"phash": None, | |
"color_hist_corr": None, | |
"sharpness1": None, | |
"sharpness2": None, | |
"sharpness_avg": None, | |
"sharpness_diff": None, | |
} | |
) | |
return all_metrics | |
def get_metric_summary(self, metrics_list): | |
"""Compute summary statistics for all metrics""" | |
metric_names = [ | |
"ssim", | |
"psnr", | |
"mse", | |
"phash", | |
"color_hist_corr", | |
"sharpness1", | |
"sharpness2", | |
"sharpness_avg", | |
"sharpness_diff", | |
] | |
summary = { | |
"total_frames": len(metrics_list), | |
"valid_frames": len([m for m in metrics_list if m.get("ssim") is not None]), | |
} | |
# Compute statistics for each metric | |
for metric_name in metric_names: | |
valid_values = [ | |
m[metric_name] for m in metrics_list if m.get(metric_name) is not None | |
] | |
if valid_values: | |
summary.update( | |
{ | |
f"{metric_name}_mean": np.mean(valid_values), | |
f"{metric_name}_min": np.min(valid_values), | |
f"{metric_name}_max": np.max(valid_values), | |
f"{metric_name}_std": np.std(valid_values), | |
} | |
) | |
return summary | |
def create_individual_metric_plots(self, metrics_list, current_frame=0): | |
"""Create individual plots for each metric with frame on x-axis""" | |
if not metrics_list: | |
return None | |
# Extract frame indices | |
frame_indices = [m["frame_index"] for m in metrics_list] | |
# Helper function to get valid data | |
def get_valid_data(metric_name): | |
values = [m.get(metric_name) for m in metrics_list] | |
valid_indices = [i for i, v in enumerate(values) if v is not None] | |
valid_values = [values[i] for i in valid_indices] | |
valid_frames = [frame_indices[i] for i in valid_indices] | |
return valid_frames, valid_values | |
# Create individual plots for each metric | |
plots = {} | |
# 1. SSIM Plot | |
ssim_frames, ssim_values = get_valid_data("ssim") | |
if ssim_values: | |
# Calculate dynamic y-axis range for SSIM to highlight differences | |
min_ssim = min(ssim_values) | |
max_ssim = max(ssim_values) | |
ssim_range = max_ssim - min_ssim | |
# If there's very little variation, zoom in to show differences | |
if ssim_range < 0.05: | |
# For small variations, zoom in to show differences better | |
center = (min_ssim + max_ssim) / 2 | |
padding = max( | |
0.02, ssim_range * 2 | |
) # At least 0.02 range or 2x actual range | |
y_min = max(0, center - padding) | |
y_max = min(1, center + padding) | |
else: | |
# For larger variations, add some padding | |
padding = ssim_range * 0.15 # 15% padding | |
y_min = max(0, min_ssim - padding) | |
y_max = min(1, max_ssim + padding) | |
fig_ssim = go.Figure() | |
# Add area fill to emphasize the curve | |
fig_ssim.add_trace( | |
go.Scatter( | |
x=ssim_frames, | |
y=[y_min] * len(ssim_frames), | |
mode="lines", | |
line=dict( | |
color="rgba(0,0,255,0)" | |
), # Transparent line for area base | |
showlegend=False, | |
hoverinfo="skip", | |
) | |
) | |
fig_ssim.add_trace( | |
go.Scatter( | |
x=ssim_frames, | |
y=ssim_values, | |
mode="lines+markers", | |
name="SSIM", | |
line=dict(color="blue", width=3), | |
marker=dict( | |
size=6, color="blue", line=dict(color="darkblue", width=1) | |
), | |
hovertemplate="<b>Frame %{x}</b><br>SSIM: %{y:.5f}<extra></extra>", | |
fill="tonexty", | |
fillcolor="rgba(0,0,255,0.1)", # Light blue fill | |
) | |
) | |
if current_frame is not None: | |
fig_ssim.add_vline( | |
x=current_frame, | |
line_dash="dash", | |
line_color="red", | |
line_width=2, | |
) | |
fig_ssim.update_layout( | |
height=300, | |
margin=dict(t=20, b=40, l=60, r=20), | |
plot_bgcolor="rgba(0,0,0,0)", | |
paper_bgcolor="rgba(0,0,0,0)", | |
showlegend=False, | |
dragmode=False, | |
hovermode="x unified", | |
) | |
fig_ssim.update_xaxes( | |
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True | |
) | |
fig_ssim.update_yaxes( | |
title_text="SSIM", | |
range=[y_min, y_max], | |
gridcolor="rgba(128,128,128,0.4)", | |
fixedrange=True, | |
) | |
plots["ssim"] = fig_ssim | |
# 2. PSNR Plot | |
psnr_frames, psnr_values = get_valid_data("psnr") | |
if psnr_values: | |
fig_psnr = go.Figure() | |
fig_psnr.add_trace( | |
go.Scatter( | |
x=psnr_frames, | |
y=psnr_values, | |
mode="lines+markers", | |
name="PSNR", | |
line=dict(color="green", width=3), | |
marker=dict(size=6), | |
hovertemplate="<b>Frame %{x}</b><br>PSNR: %{y:.2f} dB<extra></extra>", | |
) | |
) | |
if current_frame is not None: | |
fig_psnr.add_vline( | |
x=current_frame, | |
line_dash="dash", | |
line_color="red", | |
line_width=2, | |
) | |
fig_psnr.update_layout( | |
height=300, | |
margin=dict(t=20, b=40, l=60, r=20), | |
plot_bgcolor="rgba(0,0,0,0)", | |
paper_bgcolor="rgba(0,0,0,0)", | |
showlegend=False, | |
dragmode=False, | |
hovermode="x unified", | |
) | |
fig_psnr.update_xaxes( | |
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True | |
) | |
fig_psnr.update_yaxes( | |
title_text="PSNR (dB)", | |
gridcolor="rgba(128,128,128,0.4)", | |
fixedrange=True, | |
) | |
plots["psnr"] = fig_psnr | |
# 3. MSE Plot | |
mse_frames, mse_values = get_valid_data("mse") | |
if mse_values: | |
fig_mse = go.Figure() | |
fig_mse.add_trace( | |
go.Scatter( | |
x=mse_frames, | |
y=mse_values, | |
mode="lines+markers", | |
name="MSE", | |
line=dict(color="red", width=3), | |
marker=dict(size=6), | |
hovertemplate="<b>Frame %{x}</b><br>MSE: %{y:.2f}<extra></extra>", | |
) | |
) | |
if current_frame is not None: | |
fig_mse.add_vline( | |
x=current_frame, | |
line_dash="dash", | |
line_color="red", | |
line_width=2, | |
) | |
fig_mse.update_layout( | |
height=300, | |
margin=dict(t=20, b=40, l=60, r=20), | |
plot_bgcolor="rgba(0,0,0,0)", | |
paper_bgcolor="rgba(0,0,0,0)", | |
showlegend=False, | |
dragmode=False, | |
hovermode="x unified", | |
) | |
fig_mse.update_xaxes( | |
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True | |
) | |
fig_mse.update_yaxes( | |
title_text="MSE", gridcolor="rgba(128,128,128,0.4)", fixedrange=True | |
) | |
plots["mse"] = fig_mse | |
# 4. pHash Plot | |
phash_frames, phash_values = get_valid_data("phash") | |
if phash_values: | |
fig_phash = go.Figure() | |
fig_phash.add_trace( | |
go.Scatter( | |
x=phash_frames, | |
y=phash_values, | |
mode="lines+markers", | |
name="pHash", | |
line=dict(color="purple", width=3), | |
marker=dict(size=6), | |
hovertemplate="<b>Frame %{x}</b><br>pHash: %{y:.4f}<extra></extra>", | |
) | |
) | |
if current_frame is not None: | |
fig_phash.add_vline( | |
x=current_frame, | |
line_dash="dash", | |
line_color="red", | |
line_width=2, | |
) | |
fig_phash.update_layout( | |
height=300, | |
margin=dict(t=20, b=40, l=60, r=20), | |
plot_bgcolor="rgba(0,0,0,0)", | |
paper_bgcolor="rgba(0,0,0,0)", | |
showlegend=False, | |
dragmode=False, | |
hovermode="x unified", | |
) | |
fig_phash.update_xaxes( | |
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True | |
) | |
fig_phash.update_yaxes( | |
title_text="pHash Similarity", | |
gridcolor="rgba(128,128,128,0.4)", | |
fixedrange=True, | |
) | |
plots["phash"] = fig_phash | |
# 5. Color Histogram Correlation Plot | |
hist_frames, hist_values = get_valid_data("color_hist_corr") | |
if hist_values: | |
fig_hist = go.Figure() | |
fig_hist.add_trace( | |
go.Scatter( | |
x=hist_frames, | |
y=hist_values, | |
mode="lines+markers", | |
name="Color Histogram", | |
line=dict(color="orange", width=3), | |
marker=dict(size=6), | |
hovertemplate="<b>Frame %{x}</b><br>Color Histogram: %{y:.4f}<extra></extra>", | |
) | |
) | |
if current_frame is not None: | |
fig_hist.add_vline( | |
x=current_frame, | |
line_dash="dash", | |
line_color="red", | |
line_width=2, | |
) | |
fig_hist.update_layout( | |
height=300, | |
margin=dict(t=20, b=40, l=60, r=20), | |
plot_bgcolor="rgba(0,0,0,0)", | |
paper_bgcolor="rgba(0,0,0,0)", | |
showlegend=False, | |
dragmode=False, | |
hovermode="x unified", | |
) | |
fig_hist.update_xaxes( | |
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True | |
) | |
fig_hist.update_yaxes( | |
title_text="Color Histogram Correlation", | |
gridcolor="rgba(128,128,128,0.4)", | |
fixedrange=True, | |
) | |
plots["color_hist"] = fig_hist | |
# 6. Sharpness Comparison Plot | |
sharp1_frames, sharp1_values = get_valid_data("sharpness1") | |
sharp2_frames, sharp2_values = get_valid_data("sharpness2") | |
if sharp1_values or sharp2_values: | |
fig_sharp = go.Figure() | |
if sharp1_values: | |
fig_sharp.add_trace( | |
go.Scatter( | |
x=sharp1_frames, | |
y=sharp1_values, | |
mode="lines+markers", | |
name="Video 1", | |
line=dict(color="darkgreen", width=3), | |
marker=dict(size=6), | |
hovertemplate="<b>Frame %{x}</b><br>Video 1 Sharpness: %{y:.1f}<extra></extra>", | |
) | |
) | |
if sharp2_values: | |
fig_sharp.add_trace( | |
go.Scatter( | |
x=sharp2_frames, | |
y=sharp2_values, | |
mode="lines+markers", | |
name="Video 2", | |
line=dict(color="darkblue", width=3), | |
marker=dict(size=6), | |
hovertemplate="<b>Frame %{x}</b><br>Video 2 Sharpness: %{y:.1f}<extra></extra>", | |
) | |
) | |
if current_frame is not None: | |
fig_sharp.add_vline( | |
x=current_frame, | |
line_dash="dash", | |
line_color="red", | |
line_width=2, | |
) | |
fig_sharp.update_layout( | |
height=300, | |
margin=dict(t=20, b=40, l=60, r=20), | |
plot_bgcolor="rgba(0,0,0,0)", | |
paper_bgcolor="rgba(0,0,0,0)", | |
showlegend=True, | |
legend=dict( | |
orientation="h", yanchor="bottom", y=1.02, xanchor="center", x=0.5 | |
), | |
dragmode=False, | |
hovermode="x unified", | |
) | |
fig_sharp.update_xaxes( | |
title_text="Frame", gridcolor="rgba(128,128,128,0.4)", fixedrange=True | |
) | |
fig_sharp.update_yaxes( | |
title_text="Sharpness", | |
gridcolor="rgba(128,128,128,0.4)", | |
fixedrange=True, | |
) | |
plots["sharpness"] = fig_sharp | |
# 7. Overall Quality Score Plot (Combination of metrics) | |
# Calculate overall quality score by combining normalized metrics | |
if ssim_values and psnr_values and len(ssim_values) == len(psnr_values): | |
# Get data for metrics that contribute to overall score | |
phash_frames_overall, phash_values_overall = get_valid_data("phash") | |
# Ensure we have the same frames for all metrics | |
common_frames = set(ssim_frames) & set(psnr_frames) | |
if phash_values_overall: | |
common_frames = common_frames & set(phash_frames_overall) | |
common_frames = sorted(list(common_frames)) | |
if common_frames: | |
# Extract values for common frames | |
ssim_common = [ | |
ssim_values[ssim_frames.index(f)] | |
for f in common_frames | |
if f in ssim_frames | |
] | |
psnr_common = [ | |
psnr_values[psnr_frames.index(f)] | |
for f in common_frames | |
if f in psnr_frames | |
] | |
# Normalize PSNR to 0-1 scale (typical range 0-50dB) | |
psnr_normalized = [min(p / 50.0, 1.0) for p in psnr_common] | |
# Start with SSIM and normalized PSNR | |
quality_components = [ssim_common, psnr_normalized] | |
component_names = ["SSIM", "PSNR"] | |
# Add pHash if available | |
if phash_values_overall: | |
phash_common = [ | |
phash_values_overall[phash_frames_overall.index(f)] | |
for f in common_frames | |
if f in phash_frames_overall | |
] | |
if len(phash_common) == len(ssim_common): | |
quality_components.append(phash_common) | |
component_names.append("pHash") | |
# Calculate average across all components | |
overall_quality = [] | |
for i in range(len(common_frames)): | |
frame_scores = [ | |
component[i] | |
for component in quality_components | |
if i < len(component) | |
] | |
overall_quality.append(sum(frame_scores) / len(frame_scores)) | |
# Calculate dynamic y-axis range to emphasize differences | |
min_quality = min(overall_quality) | |
max_quality = max(overall_quality) | |
quality_range = max_quality - min_quality | |
# If there's very little variation, use a smaller range to emphasize small differences | |
if quality_range < 0.08: | |
# For small variations, zoom in to show differences better | |
center = (min_quality + max_quality) / 2 | |
padding = max( | |
0.04, quality_range * 2 | |
) # At least 0.04 range or 2x the actual range | |
y_min = max(0, center - padding) | |
y_max = min(1, center + padding) | |
else: | |
# For larger variations, add some padding | |
padding = quality_range * 0.15 # 15% padding | |
y_min = max(0, min_quality - padding) | |
y_max = min(1, max_quality + padding) | |
fig_overall = go.Figure() | |
# Add area fill to emphasize the quality curve | |
fig_overall.add_trace( | |
go.Scatter( | |
x=common_frames, | |
y=[y_min] * len(common_frames), | |
mode="lines", | |
line=dict( | |
color="rgba(255,215,0,0)" | |
), # Transparent line for area base | |
showlegend=False, | |
hoverinfo="skip", | |
) | |
) | |
fig_overall.add_trace( | |
go.Scatter( | |
x=common_frames, | |
y=overall_quality, | |
mode="lines+markers", | |
name="Overall Quality", | |
line=dict(color="gold", width=4), | |
marker=dict( | |
size=8, color="gold", line=dict(color="orange", width=2) | |
), | |
hovertemplate="<b>Frame %{x}</b><br>Overall Quality: %{y:.5f}<br><i>Combined from: " | |
+ ", ".join(component_names) | |
+ "</i><extra></extra>", | |
fill="tonexty", | |
fillcolor="rgba(255,215,0,0.15)", # Semi-transparent gold fill | |
) | |
) | |
# Add quality threshold indicators if there are significant variations | |
if ( | |
quality_range > 0.03 | |
): # Show thresholds if there's meaningful variation | |
# Add reference lines for quality levels within the visible range | |
if y_min <= 0.9 <= y_max: | |
fig_overall.add_hline( | |
y=0.9, | |
line_dash="dot", | |
line_color="green", | |
line_width=1, | |
annotation_text="Excellent (0.9)", | |
annotation_position="right", | |
) | |
if y_min <= 0.8 <= y_max: | |
fig_overall.add_hline( | |
y=0.8, | |
line_dash="dot", | |
line_color="blue", | |
line_width=1, | |
annotation_text="Good (0.8)", | |
annotation_position="right", | |
) | |
if current_frame is not None: | |
fig_overall.add_vline( | |
x=current_frame, | |
line_dash="dash", | |
line_color="red", | |
line_width=2, | |
) | |
fig_overall.update_layout( | |
height=300, | |
margin=dict(t=20, b=40, l=60, r=20), | |
plot_bgcolor="rgba(0,0,0,0)", | |
paper_bgcolor="rgba(0,0,0,0)", | |
showlegend=False, | |
dragmode=False, | |
hovermode="x unified", | |
) | |
fig_overall.update_xaxes( | |
title_text="Frame", | |
gridcolor="rgba(128,128,128,0.4)", | |
fixedrange=True, | |
) | |
fig_overall.update_yaxes( | |
title_text="Overall Quality Score", | |
range=[y_min, y_max], | |
gridcolor="rgba(128,128,128,0.4)", | |
fixedrange=True, | |
) | |
plots["overall"] = fig_overall | |
return plots | |
def create_modern_plot(self, metrics_list, current_frame=0): | |
"""Create individual metric plots instead of combined dashboard""" | |
return self.create_individual_metric_plots(metrics_list, current_frame) | |
class VideoFrameComparator: | |
def __init__(self): | |
self.video1_frames = [] | |
self.video2_frames = [] | |
self.max_frames = 0 | |
self.frame_metrics = FrameMetrics() | |
self.computed_metrics = [] | |
self.metrics_summary = {} | |
def extract_frames(self, video_path): | |
"""Extract all frames from a video file or URL""" | |
if not video_path: | |
return [] | |
# Check if it's a URL or local file | |
is_url = video_path.startswith(("http://", "https://")) | |
if not is_url and not os.path.exists(video_path): | |
print(f"Warning: Local video file not found: {video_path}") | |
return [] | |
frames = [] | |
cap = cv2.VideoCapture(video_path) | |
if not cap.isOpened(): | |
print( | |
f"Error: Could not open video {'URL' if is_url else 'file'}: {video_path}" | |
) | |
return [] | |
try: | |
frame_count = 0 | |
while True: | |
ret, frame = cap.read() | |
if not ret: | |
break | |
# Convert BGR to RGB for display | |
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | |
frames.append(frame_rgb) | |
frame_count += 1 | |
# Add progress feedback for URLs (which might be slower) | |
if is_url and frame_count % 30 == 0: | |
print(f"Processed {frame_count} frames from URL...") | |
except Exception as e: | |
print(f"Error processing video: {e}") | |
finally: | |
cap.release() | |
print( | |
f"Successfully extracted {len(frames)} frames from {'URL' if is_url else 'file'}: {video_path}" | |
) | |
return frames | |
def is_comparison_in_data_json( | |
self, video1_path, video2_path, json_file_path="data.json" | |
): | |
"""Check if this video comparison exists in data.json""" | |
try: | |
with open(json_file_path, "r") as f: | |
data = json.load(f) | |
for comparison in data.get("comparisons", []): | |
videos = comparison.get("videos", []) | |
if len(videos) == 2: | |
# Check both orders (works for both local files and URLs) | |
if (videos[0] == video1_path and videos[1] == video2_path) or ( | |
videos[0] == video2_path and videos[1] == video1_path | |
): | |
return True | |
return False | |
except: | |
return False | |
def load_videos(self, video1_path, video2_path): | |
"""Load both videos and extract frames""" | |
if not video1_path and not video2_path: | |
return "Please upload at least one video.", 0, None, None, "", None | |
# Extract frames from both videos | |
self.video1_frames = self.extract_frames(video1_path) if video1_path else [] | |
self.video2_frames = self.extract_frames(video2_path) if video2_path else [] | |
# Determine maximum number of frames | |
self.max_frames = max(len(self.video1_frames), len(self.video2_frames)) | |
if self.max_frames == 0: | |
return ( | |
"No valid frames found in the uploaded videos.", | |
0, | |
None, | |
None, | |
"", | |
None, | |
) | |
# Compute metrics if both videos are present and not in data.json | |
metrics_info = "" | |
plots = None | |
if ( | |
video1_path | |
and video2_path | |
and not self.is_comparison_in_data_json(video1_path, video2_path) | |
): | |
print("Computing comprehensive frame-by-frame metrics...") | |
self.computed_metrics = self.frame_metrics.compute_all_metrics( | |
self.video1_frames, self.video2_frames | |
) | |
self.metrics_summary = self.frame_metrics.get_metric_summary( | |
self.computed_metrics | |
) | |
# Build metrics info string | |
metrics_info = "\n\n📊 Computed Metrics Summary:\n" | |
metric_display = { | |
"ssim": ("SSIM", ".4f", "", "↑ Higher=Better"), | |
"psnr": ("PSNR", ".2f", " dB", "↑ Higher=Better"), | |
"mse": ("MSE", ".2f", "", "↓ Lower=Better"), | |
"phash": ("pHash", ".4f", "", "↑ Higher=Better"), | |
"color_hist_corr": ("Color Hist", ".4f", "", "↑ Higher=Better"), | |
"sharpness_avg": ("Sharpness", ".1f", "", "↑ Higher=Better"), | |
} | |
for metric_key, ( | |
display_name, | |
format_str, | |
unit, | |
direction, | |
) in metric_display.items(): | |
if self.metrics_summary.get(f"{metric_key}_mean") is not None: | |
mean_val = self.metrics_summary[f"{metric_key}_mean"] | |
std_val = self.metrics_summary[f"{metric_key}_std"] | |
metrics_info += f"{display_name}: μ={mean_val:{format_str}}{unit}, σ={std_val:{format_str}}{unit} ({direction})\n" | |
metrics_info += f"Valid Frames: {self.metrics_summary['valid_frames']}/{self.metrics_summary['total_frames']}" | |
# Generate initial plot | |
plots = self.frame_metrics.create_individual_metric_plots( | |
self.computed_metrics, 0 | |
) | |
else: | |
self.computed_metrics = [] | |
self.metrics_summary = {} | |
if video1_path and video2_path: | |
metrics_info = "\n\n📋 Note: This comparison is predefined in data.json (metrics not computed)" | |
# Get initial frames | |
frame1 = ( | |
self.video1_frames[0] | |
if self.video1_frames | |
else np.zeros((480, 640, 3), dtype=np.uint8) | |
) | |
frame2 = ( | |
self.video2_frames[0] | |
if self.video2_frames | |
else np.zeros((480, 640, 3), dtype=np.uint8) | |
) | |
status_msg = "Videos loaded successfully!\n" | |
status_msg += f"Video 1: {len(self.video1_frames)} frames\n" | |
status_msg += f"Video 2: {len(self.video2_frames)} frames\n" | |
status_msg += ( | |
f"Use the slider to navigate through frames (0-{self.max_frames - 1})" | |
) | |
status_msg += metrics_info | |
return ( | |
status_msg, | |
self.max_frames - 1, | |
frame1, | |
frame2, | |
self.get_current_frame_info(0), | |
plots, | |
) | |
def get_frames_at_index(self, frame_index): | |
"""Get frames at specific index from both videos""" | |
frame_index = int(frame_index) | |
# Get frame from video 1 | |
if frame_index < len(self.video1_frames): | |
frame1 = self.video1_frames[frame_index] | |
else: | |
# Create a placeholder if frame doesn't exist | |
frame1 = np.zeros((480, 640, 3), dtype=np.uint8) | |
cv2.putText( | |
frame1, | |
f"Frame {frame_index} not available", | |
(50, 240), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
1, | |
(255, 255, 255), | |
2, | |
) | |
# Get frame from video 2 | |
if frame_index < len(self.video2_frames): | |
frame2 = self.video2_frames[frame_index] | |
else: | |
# Create a placeholder if frame doesn't exist | |
frame2 = np.zeros((480, 640, 3), dtype=np.uint8) | |
cv2.putText( | |
frame2, | |
f"Frame {frame_index} not available", | |
(50, 240), | |
cv2.FONT_HERSHEY_SIMPLEX, | |
1, | |
(255, 255, 255), | |
2, | |
) | |
return frame1, frame2 | |
def get_current_frame_info(self, frame_index): | |
"""Get information about the current frame including metrics""" | |
frame_index = int(frame_index) | |
info = f"Current Frame: {frame_index} / {self.max_frames - 1}" | |
# Add metrics info if available | |
if self.computed_metrics and frame_index < len(self.computed_metrics): | |
metrics = self.computed_metrics[frame_index] | |
# === COMPARISON METRICS (Between Videos) === | |
comparison_metrics = [] | |
# SSIM with quality assessment | |
if metrics.get("ssim") is not None: | |
ssim_val = metrics["ssim"] | |
if ssim_val >= 0.9: | |
quality = "🟢 Excellent" | |
elif ssim_val >= 0.8: | |
quality = "🔵 Good" | |
elif ssim_val >= 0.6: | |
quality = "🟡 Fair" | |
else: | |
quality = "🔴 Poor" | |
comparison_metrics.append( | |
f"SSIM: {ssim_val:.4f} ({quality} similarity)" | |
) | |
# PSNR with quality indicator | |
if metrics.get("psnr") is not None: | |
psnr_val = metrics["psnr"] | |
if psnr_val >= 40: | |
psnr_quality = "🟢 Excellent" | |
elif psnr_val >= 30: | |
psnr_quality = "🔵 Good" | |
elif psnr_val >= 20: | |
psnr_quality = "🟡 Fair" | |
else: | |
psnr_quality = "🔴 Poor" | |
comparison_metrics.append( | |
f"PSNR: {psnr_val:.1f}dB ({psnr_quality} signal quality)" | |
) | |
# MSE with quality indicator (lower is better) | |
if metrics.get("mse") is not None: | |
mse_val = metrics["mse"] | |
if mse_val <= 50: | |
mse_quality = "🟢 Very Similar" | |
elif mse_val <= 100: | |
mse_quality = "🔵 Similar" | |
elif mse_val <= 200: | |
mse_quality = "🟡 Moderately Different" | |
else: | |
mse_quality = "🔴 Very Different" | |
comparison_metrics.append(f"MSE: {mse_val:.1f} ({mse_quality})") | |
# pHash with quality indicator | |
if metrics.get("phash") is not None: | |
phash_val = metrics["phash"] | |
if phash_val >= 0.95: | |
phash_quality = "🟢 Nearly Identical" | |
elif phash_val >= 0.9: | |
phash_quality = "🔵 Very Similar" | |
elif phash_val >= 0.8: | |
phash_quality = "🟡 Somewhat Similar" | |
else: | |
phash_quality = "🔴 Different" | |
comparison_metrics.append( | |
f"pHash: {phash_val:.3f} ({phash_quality} perceptually)" | |
) | |
# Color Histogram Correlation | |
if metrics.get("color_hist_corr") is not None: | |
color_val = metrics["color_hist_corr"] | |
if color_val >= 0.9: | |
color_quality = "🟢 Very Similar Colors" | |
elif color_val >= 0.8: | |
color_quality = "🔵 Similar Colors" | |
elif color_val >= 0.6: | |
color_quality = "🟡 Moderate Color Diff" | |
else: | |
color_quality = "🔴 Different Colors" | |
comparison_metrics.append(f"Color: {color_val:.3f} ({color_quality})") | |
# Add comparison metrics to info | |
if comparison_metrics: | |
info += "\n📊 Comparison Analysis: " + " | ".join(comparison_metrics) | |
# === INDIVIDUAL VIDEO QUALITY === | |
individual_metrics = [] | |
# Individual Sharpness for each video | |
if metrics.get("sharpness1") is not None: | |
sharp1 = metrics["sharpness1"] | |
if sharp1 >= 200: | |
sharp1_quality = "🟢 Sharp" | |
elif sharp1 >= 100: | |
sharp1_quality = "🔵 Moderate" | |
elif sharp1 >= 50: | |
sharp1_quality = "🟡 Soft" | |
else: | |
sharp1_quality = "🔴 Blurry" | |
individual_metrics.append( | |
f"V1 Sharpness: {sharp1:.0f} ({sharp1_quality})" | |
) | |
if metrics.get("sharpness2") is not None: | |
sharp2 = metrics["sharpness2"] | |
if sharp2 >= 200: | |
sharp2_quality = "🟢 Sharp" | |
elif sharp2 >= 100: | |
sharp2_quality = "🔵 Moderate" | |
elif sharp2 >= 50: | |
sharp2_quality = "🟡 Soft" | |
else: | |
sharp2_quality = "🔴 Blurry" | |
individual_metrics.append( | |
f"V2 Sharpness: {sharp2:.0f} ({sharp2_quality})" | |
) | |
# Sharpness comparison | |
if ( | |
metrics.get("sharpness1") is not None | |
and metrics.get("sharpness2") is not None | |
): | |
sharp1 = metrics["sharpness1"] | |
sharp2 = metrics["sharpness2"] | |
# Calculate difference percentage | |
diff_pct = abs(sharp1 - sharp2) / max(sharp1, sharp2) * 100 | |
# Determine significance with clearer labels | |
if diff_pct > 20: | |
significance = "🔴 MAJOR difference" | |
elif diff_pct > 10: | |
significance = "🟡 MODERATE difference" | |
elif diff_pct > 5: | |
significance = "🔵 MINOR difference" | |
else: | |
significance = "🟢 NEGLIGIBLE difference" | |
# Determine which is sharper | |
if sharp1 > sharp2: | |
comparison = "V1 is sharper" | |
elif sharp2 > sharp1: | |
comparison = "V2 is sharper" | |
else: | |
comparison = "Equal sharpness" | |
individual_metrics.append(f"Sharpness: {comparison} ({significance})") | |
# Add individual metrics to info | |
if individual_metrics: | |
info += "\n🎯 Individual Quality: " + " | ".join(individual_metrics) | |
# === OVERALL QUALITY ASSESSMENT === | |
# Calculate combined quality score from multiple metrics | |
quality_score = 0 | |
quality_count = 0 | |
metric_contributions = [] | |
# SSIM contribution | |
if metrics.get("ssim") is not None: | |
quality_score += metrics["ssim"] | |
quality_count += 1 | |
metric_contributions.append(f"SSIM({metrics['ssim']:.3f})") | |
# PSNR contribution (normalized to 0-1 scale) | |
if metrics.get("psnr") is not None: | |
psnr_norm = min(metrics["psnr"] / 50, 1.0) | |
quality_score += psnr_norm | |
quality_count += 1 | |
metric_contributions.append(f"PSNR({psnr_norm:.3f})") | |
# pHash contribution | |
if metrics.get("phash") is not None: | |
quality_score += metrics["phash"] | |
quality_count += 1 | |
metric_contributions.append(f"pHash({metrics['phash']:.3f})") | |
if quality_count > 0: | |
avg_quality = quality_score / quality_count | |
# Add overall assessment with formula explanation | |
if avg_quality >= 0.9: | |
overall = "✨ Excellent Overall" | |
quality_indicator = "🟢" | |
elif avg_quality >= 0.8: | |
overall = "✅ Good Overall" | |
quality_indicator = "🔵" | |
elif avg_quality >= 0.6: | |
overall = "⚠️ Fair Overall" | |
quality_indicator = "🟡" | |
else: | |
overall = "❌ Poor Overall" | |
quality_indicator = "🔴" | |
# Calculate quality variation across all frames to show differences | |
quality_variation = "" | |
if self.computed_metrics and len(self.computed_metrics) > 1: | |
# Calculate overall quality for all frames to show variation | |
all_quality_scores = [] | |
for metric in self.computed_metrics: | |
frame_quality = 0 | |
frame_quality_count = 0 | |
if metric.get("ssim") is not None: | |
frame_quality += metric["ssim"] | |
frame_quality_count += 1 | |
if metric.get("psnr") is not None: | |
frame_quality += min(metric["psnr"] / 50, 1.0) | |
frame_quality_count += 1 | |
if metric.get("phash") is not None: | |
frame_quality += metric["phash"] | |
frame_quality_count += 1 | |
if frame_quality_count > 0: | |
all_quality_scores.append( | |
frame_quality / frame_quality_count | |
) | |
if len(all_quality_scores) > 1: | |
min_qual = min(all_quality_scores) | |
max_qual = max(all_quality_scores) | |
variation = max_qual - min_qual | |
if variation > 0.08: | |
quality_variation = ( | |
f" | 📊 High Variation (Δ{variation:.4f})" | |
) | |
elif variation > 0.04: | |
quality_variation = ( | |
f" | 📊 Moderate Variation (Δ{variation:.4f})" | |
) | |
elif variation > 0.02: | |
quality_variation = ( | |
f" | 📊 Low Variation (Δ{variation:.4f})" | |
) | |
else: | |
quality_variation = ( | |
f" | 📊 Stable Quality (Δ{variation:.4f})" | |
) | |
info += f"\n🎯 Overall Quality: {quality_indicator} {avg_quality:.5f} ({overall}){quality_variation}" | |
info += f"\n 💡 Formula: Average of {' + '.join(metric_contributions)} = {avg_quality:.5f}" | |
return info | |
def get_updated_plot(self, frame_index): | |
"""Get updated plot with current frame highlighted""" | |
if self.computed_metrics: | |
return self.frame_metrics.create_individual_metric_plots( | |
self.computed_metrics, int(frame_index) | |
) | |
return None | |
def load_examples_from_json(json_file_path="data.json"): | |
"""Load example video pairs from JSON configuration file""" | |
try: | |
with open(json_file_path, "r") as f: | |
data = json.load(f) | |
examples = [] | |
# Extract video pairs from the comparisons | |
for comparison in data.get("comparisons", []): | |
videos = comparison.get("videos", []) | |
# Validate that video files/URLs exist or are accessible | |
valid_videos = [] | |
for video_path in videos: | |
if video_path: # Check if not empty/None | |
# Check if it's a URL | |
if video_path.startswith(("http://", "https://")): | |
# For URLs, we'll assume they're valid (can't easily check without downloading) | |
# OpenCV will handle the validation during actual loading | |
valid_videos.append(video_path) | |
print(f"Added video URL: {video_path}") | |
else: | |
# Convert to absolute path for local files | |
abs_path = os.path.abspath(video_path) | |
if os.path.exists(abs_path): | |
valid_videos.append(abs_path) | |
print(f"Added local video file: {abs_path}") | |
elif os.path.exists(video_path): | |
# Try relative path as fallback | |
valid_videos.append(video_path) | |
print(f"Added local video file: {video_path}") | |
else: | |
print( | |
f"Warning: Local video file not found: {video_path} (abs: {abs_path})" | |
) | |
# Add to examples if we have valid videos | |
if len(valid_videos) == 2: | |
examples.append(valid_videos) | |
elif len(valid_videos) == 1: | |
# Single video example (compare with None) | |
examples.append([valid_videos[0], None]) | |
return examples | |
except FileNotFoundError: | |
print(f"Warning: {json_file_path} not found. No examples will be loaded.") | |
return [] | |
except json.JSONDecodeError as e: | |
print(f"Error parsing {json_file_path}: {e}") | |
return [] | |
except Exception as e: | |
print(f"Error loading examples: {e}") | |
return [] | |
def get_all_videos_from_json(json_file_path="data.json"): | |
"""Get list of all unique videos mentioned in the JSON file""" | |
try: | |
with open(json_file_path, "r") as f: | |
data = json.load(f) | |
all_videos = set() | |
# Extract all unique video paths/URLs from comparisons | |
for comparison in data.get("comparisons", []): | |
videos = comparison.get("videos", []) | |
for video_path in videos: | |
if video_path: # Only add non-empty paths | |
# Check if it's a URL or local file | |
if video_path.startswith(("http://", "https://")): | |
# For URLs, add them directly | |
all_videos.add(video_path) | |
elif os.path.exists(video_path): | |
# For local files, check existence before adding | |
all_videos.add(video_path) | |
return sorted(list(all_videos)) | |
except FileNotFoundError: | |
print(f"Warning: {json_file_path} not found.") | |
return [] | |
except json.JSONDecodeError as e: | |
print(f"Error parsing {json_file_path}: {e}") | |
return [] | |
except Exception as e: | |
print(f"Error loading videos: {e}") | |
return [] | |
def create_app(): | |
comparator = VideoFrameComparator() | |
example_pairs = load_examples_from_json() | |
print(f"DEBUG: Loaded {len(example_pairs)} example pairs") | |
for i, pair in enumerate(example_pairs): | |
print(f" Example {i + 1}: {pair}") | |
all_videos = get_all_videos_from_json() | |
with gr.Blocks( | |
title="Frame Arena - Video Frame Comparator", | |
# theme=gr.themes.Soft(), | |
css=""" | |
/* Ensure plots adapt to theme */ | |
.plotly .main-svg { | |
color: var(--body-text-color, #000) !important; | |
} | |
/* Grid visibility for both themes */ | |
.plotly .gridlayer .xgrid, .plotly .gridlayer .ygrid { | |
stroke-opacity: 0.4 !important; | |
} | |
/* Axis text color adaptation */ | |
.plotly .xtick text, .plotly .ytick text { | |
fill: var(--body-text-color, #000) !important; | |
} | |
/* Axis title color adaptation - multiple selectors for better coverage */ | |
.plotly .g-xtitle, .plotly .g-ytitle, | |
.plotly .xtitle, .plotly .ytitle, | |
.plotly text[class*="xtitle"], .plotly text[class*="ytitle"], | |
.plotly .infolayer .g-xtitle, .plotly .infolayer .g-ytitle { | |
fill: var(--body-text-color, #000) !important; | |
} | |
/* Additional axis title selectors */ | |
.plotly .subplot .xtitle, .plotly .subplot .ytitle, | |
.plotly .cartesianlayer .xtitle, .plotly .cartesianlayer .ytitle { | |
fill: var(--body-text-color, #000) !important; | |
} | |
/* SVG text elements in plots */ | |
.plotly svg text { | |
fill: var(--body-text-color, #000) !important; | |
} | |
/* Legend text color */ | |
.plotly .legendtext, .plotly .legend text { | |
fill: var(--body-text-color, #000) !important; | |
} | |
/* Hover label adaptation */ | |
.plotly .hoverlayer .hovertext, .plotly .hovertext { | |
fill: var(--body-text-color, #000) !important; | |
color: var(--body-text-color, #000) !important; | |
} | |
/* Annotation text */ | |
.plotly .annotation-text, .plotly .annotation { | |
fill: var(--body-text-color, #000) !important; | |
} | |
/* Disable plot interactions except hover */ | |
.plotly .modebar { | |
display: none !important; | |
} | |
.plotly .plot-container .plotly { | |
pointer-events: none !important; | |
} | |
.plotly .plot-container .plotly .hoverlayer { | |
pointer-events: auto !important; | |
} | |
.plotly .plot-container .plotly .hovertext { | |
pointer-events: auto !important; | |
} | |
""", | |
# js=""" | |
# function updatePlotColors() { | |
# // Get current theme color | |
# const bodyStyle = getComputedStyle(document.body); | |
# const textColor = bodyStyle.getPropertyValue('--body-text-color') || | |
# bodyStyle.color || | |
# (bodyStyle.backgroundColor === 'rgb(255, 255, 255)' ? '#000000' : '#ffffff'); | |
# // Update all plot text elements | |
# document.querySelectorAll('.plotly svg text').forEach(text => { | |
# text.setAttribute('fill', textColor); | |
# }); | |
# } | |
# // Update colors on load and theme change | |
# window.addEventListener('load', updatePlotColors); | |
# // Watch for theme changes | |
# const observer = new MutationObserver(updatePlotColors); | |
# observer.observe(document.body, { | |
# attributes: true, | |
# attributeFilter: ['class', 'style'] | |
# }); | |
# // Also watch for CSS variable changes | |
# if (window.CSS && CSS.supports('color', 'var(--body-text-color)')) { | |
# const style = document.createElement('style'); | |
# style.textContent = ` | |
# .plotly svg text { | |
# fill: var(--body-text-color, currentColor) !important; | |
# } | |
# `; | |
# document.head.appendChild(style); | |
# } | |
# """, | |
) as app: | |
gr.Markdown(""" | |
# 🎬 Frame Arena: Frame by frame comparisons of any videos | |
> 🎉 This tool has been created to celebrate our Wan 2.2 [text-to-video](https://replicate.com/wan-video/wan-2.2-t2v-480p-fast) and [image-to-video](https://replicate.com/wan-video/wan-2.2-i2v-a14b) endpoints on Replicate. Want to know more? Check out [our blog](https://www.wan22.com/blog/video-optimization-on-replicate)! | |
- Upload videos in common formats with the same number of frames (MP4, AVI, MOV, etc.) or use URLs | |
- **7 Quality Metrics**: SSIM, PSNR, MSE, pHash, Color Histogram, Sharpness + Overall Quality | |
- **Individual Visualization**: Each metric gets its own dedicated plot | |
- **Real-time Analysis**: Navigate frames with live metric updates | |
- **Smart Comparisons**: Understand differences between videos per metric | |
**Perfect for**: Analyzing compression effects, processing artifacts, visual quality assessment, and compression algorithm comparisons. | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown("### Video 1") | |
video1_input = gr.File( | |
label="Upload Video 1", | |
file_types=[ | |
".mp4", | |
".avi", | |
".mov", | |
".mkv", | |
".wmv", | |
".flv", | |
".webm", | |
], | |
type="filepath", | |
) | |
with gr.Column(): | |
gr.Markdown("### Video 2") | |
video2_input = gr.File( | |
label="Upload Video 2", | |
file_types=[ | |
".mp4", | |
".avi", | |
".mov", | |
".mkv", | |
".wmv", | |
".flv", | |
".webm", | |
], | |
type="filepath", | |
) | |
# Add examples at the top for better UX | |
if example_pairs: | |
gr.Markdown("### 📁 Example Video Comparisons") | |
examples_component_top = gr.Examples( | |
examples=example_pairs, | |
inputs=[video1_input, video2_input], | |
label="Click any example to load video pairs:", | |
examples_per_page=10, | |
run_on_click=False, # We'll handle this manually | |
) | |
load_btn = gr.Button("🔄 Load Videos", variant="primary", size="lg") | |
# Frame comparison section (initially hidden) | |
frame_display = gr.Row(visible=False) | |
with frame_display: | |
with gr.Column(): | |
gr.Markdown("### Video 1 - Current Frame") | |
frame1_output = gr.Image( | |
label="Video 1 Frame", type="numpy", interactive=False, height=400 | |
) | |
with gr.Column(): | |
gr.Markdown("### Video 2 - Current Frame") | |
frame2_output = gr.Image( | |
label="Video 2 Frame", type="numpy", interactive=False, height=400 | |
) | |
# Frame navigation (initially hidden) - moved underneath frames | |
frame_controls = gr.Row(visible=False) | |
with frame_controls: | |
frame_slider = gr.Slider( | |
minimum=0, | |
maximum=0, | |
step=1, | |
value=0, | |
label="Frame Number", | |
interactive=True, | |
) | |
# Comprehensive metrics visualization (initially hidden) | |
metrics_section = gr.Row(visible=False) | |
with metrics_section: | |
with gr.Column(): | |
gr.Markdown("### 📊 Metric Analysis") | |
# Overall quality plot | |
with gr.Row(): | |
overall_plot = gr.Plot( | |
label="Overall Quality (Combined Metric [SSIM + normalized_PSNR + pHash])", | |
show_label=True, | |
) | |
# Frame info moved below overall quality plot | |
frame_info = gr.Textbox( | |
label="Frame Information & Metrics", | |
interactive=False, | |
value="", | |
lines=3, | |
) | |
# Individual metric plots | |
with gr.Row(): | |
ssim_plot = gr.Plot(label="SSIM", show_label=True) | |
psnr_plot = gr.Plot(label="PSNR", show_label=True) | |
with gr.Row(): | |
mse_plot = gr.Plot(label="MSE", show_label=True) | |
phash_plot = gr.Plot(label="pHash", show_label=True) | |
with gr.Row(): | |
color_plot = gr.Plot(label="Color Histogram", show_label=True) | |
sharpness_plot = gr.Plot(label="Sharpness", show_label=True) | |
# Add comprehensive usage guide | |
with gr.Accordion("📖 Usage Guide & Metrics Reference", open=False): | |
with gr.Row() as info_section: | |
with gr.Column(): | |
status_output = gr.Textbox( | |
label="Status", interactive=False, lines=8 | |
) | |
with gr.Column(): | |
gr.Markdown(""" | |
### 📊 Metrics Explained | |
- **SSIM**: Structural Similarity (1.0 = identical structure, 0.0 = completely different) | |
- **PSNR**: Peak Signal-to-Noise Ratio in dB (higher = better quality, less noise) | |
- **MSE**: Mean Squared Error (lower = more similar pixel values) | |
- **pHash**: Perceptual Hash similarity (1.0 = visually identical) | |
- **Color Histogram**: Color distribution correlation (1.0 = identical color patterns) | |
- **Sharpness**: Laplacian variance per video (higher = sharper/more detailed images) | |
- **Overall Quality**: Combined metric averaging SSIM, normalized PSNR, and pHash (when available) | |
""") | |
with gr.Row(): | |
with gr.Column(): | |
gr.Markdown(""" | |
### 🎯 Quality Assessment Scale (Research-Based Thresholds) | |
**SSIM Scale** (based on human perception studies): | |
- 🟢 **Excellent (≥0.9)**: Visually indistinguishable differences | |
- 🔵 **Good (≥0.8)**: Minor visible differences, still high quality | |
- 🟡 **Fair (≥0.6)**: Noticeable differences, acceptable quality | |
- 🔴 **Poor (<0.6)**: Significant visible artifacts and differences | |
**PSNR Scale** (standard video quality benchmarks): | |
- 🟢 **Excellent (≥40dB)**: Professional broadcast quality | |
- 🔵 **Good (≥30dB)**: High consumer video quality | |
- 🟡 **Fair (≥20dB)**: Acceptable for web streaming | |
- 🔴 **Poor (<20dB)**: Low quality with visible compression artifacts | |
**MSE Scale** (pixel difference thresholds): | |
- 🟢 **Very Similar (≤50)**: Minimal pixel-level differences | |
- 🔵 **Similar (≤100)**: Small differences, good quality preservation | |
- 🟡 **Moderately Different (≤200)**: Noticeable but acceptable differences | |
- 🔴 **Very Different (>200)**: Significant pixel-level changes | |
""") | |
with gr.Column(): | |
gr.Markdown(""" | |
### 🔍 Understanding Comparisons | |
**Comparison Analysis**: Shows how similar/different the videos are | |
- Most metrics indicate **similarity** - not which video "wins" | |
- Higher SSIM/PSNR/pHash/Color = more similar videos | |
- Lower MSE = more similar videos | |
**Individual Quality**: Shows the quality of each video separately | |
- Sharpness comparison shows which video has more detail | |
- Significance levels: 🔴 MAJOR (>20%), 🟡 MODERATE (10-20%), 🔵 MINOR (5-10%), 🟢 NEGLIGIBLE (<5%) | |
**Overall Quality**: Combines multiple metrics to provide a single similarity score | |
- **Formula**: Average of [SSIM + normalized_PSNR + pHash] | |
- **PSNR Normalization**: PSNR values are divided by 50dB and capped at 1.0 | |
- **Range**: 0.0 to 1.0 (higher = more similar videos overall) | |
- **Purpose**: Provides a single metric when you need one overall assessment | |
- **Limitation**: Different metrics may disagree; check individual metrics for details | |
""") | |
# Connect examples to auto-loading | |
if example_pairs: | |
# Use a manual approach to handle examples click | |
def examples_manual_handler(video1, video2): | |
print("DEBUG: Examples clicked manually!") | |
return load_videos_handler(video1, video2) | |
# Since we can't directly attach to examples, we'll use the change events | |
# Event handlers | |
def load_videos_handler(video1, video2): | |
print( | |
f"DEBUG: load_videos_handler called with video1={video1}, video2={video2}" | |
) | |
status, max_frames, frame1, frame2, info, plots = comparator.load_videos( | |
video1, video2 | |
) | |
# Update slider | |
slider_update = gr.Slider( | |
minimum=0, | |
maximum=max_frames, | |
step=1, | |
value=0, | |
interactive=True if max_frames > 0 else False, | |
) | |
# Show/hide sections based on whether videos were loaded successfully | |
videos_loaded = max_frames > 0 | |
# Extract individual plots from the plots dictionary | |
ssim_fig = plots.get("ssim") if plots else None | |
psnr_fig = plots.get("psnr") if plots else None | |
mse_fig = plots.get("mse") if plots else None | |
phash_fig = plots.get("phash") if plots else None | |
color_fig = plots.get("color_hist") if plots else None | |
sharpness_fig = plots.get("sharpness") if plots else None | |
overall_fig = plots.get("overall") if plots else None | |
return ( | |
status, # status_output | |
slider_update, # frame_slider | |
frame1, # frame1_output | |
frame2, # frame2_output | |
info, # frame_info | |
ssim_fig, # ssim_plot | |
psnr_fig, # psnr_plot | |
mse_fig, # mse_plot | |
phash_fig, # phash_plot | |
color_fig, # color_plot | |
sharpness_fig, # sharpness_plot | |
overall_fig, # overall_plot | |
gr.Row(visible=videos_loaded), # frame_controls | |
gr.Row(visible=videos_loaded), # frame_display | |
gr.Row(visible=videos_loaded and plots is not None), # metrics_section | |
gr.Row(visible=videos_loaded), # info_section | |
) | |
def update_frames(frame_index): | |
if comparator.max_frames == 0: | |
return ( | |
None, | |
None, | |
"No videos loaded", | |
None, | |
None, | |
None, | |
None, | |
None, | |
None, | |
) | |
frame1, frame2 = comparator.get_frames_at_index(frame_index) | |
info = comparator.get_current_frame_info(frame_index) | |
plots = comparator.get_updated_plot(frame_index) | |
# Extract individual plots from the plots dictionary | |
ssim_fig = plots.get("ssim") if plots else None | |
psnr_fig = plots.get("psnr") if plots else None | |
mse_fig = plots.get("mse") if plots else None | |
phash_fig = plots.get("phash") if plots else None | |
color_fig = plots.get("color_hist") if plots else None | |
sharpness_fig = plots.get("sharpness") if plots else None | |
overall_fig = plots.get("overall") if plots else None | |
return ( | |
frame1, | |
frame2, | |
info, | |
ssim_fig, | |
psnr_fig, | |
mse_fig, | |
phash_fig, | |
color_fig, | |
sharpness_fig, | |
overall_fig, | |
) | |
# Auto-load when examples populate the inputs | |
def auto_load_when_examples_change(video1, video2): | |
print( | |
f"DEBUG: auto_load_when_examples_change called with video1={video1}, video2={video2}" | |
) | |
# Only auto-load if both inputs are provided (from examples) | |
if video1 and video2: | |
print("DEBUG: Both videos present, calling load_videos_handler") | |
return load_videos_handler(video1, video2) | |
# If only one or no videos, return default empty state | |
print("DEBUG: Not both videos present, returning default state") | |
return ( | |
"Please upload videos or select an example", # status_output | |
gr.Slider( | |
minimum=0, maximum=0, step=1, value=0, interactive=False | |
), # frame_slider | |
None, # frame1_output | |
None, # frame2_output | |
"", # frame_info | |
None, # ssim_plot | |
None, # psnr_plot | |
None, # mse_plot | |
None, # phash_plot | |
None, # color_plot | |
None, # sharpness_plot | |
None, # overall_plot | |
gr.Row(visible=False), # frame_controls | |
gr.Row(visible=False), # frame_display | |
gr.Row(visible=False), # metrics_section | |
gr.Row(visible=False), # info_section | |
) | |
# Enhanced auto-load function with more debug info | |
def enhanced_auto_load(video1, video2): | |
print(f"DEBUG: Input change detected! video1={video1}, video2={video2}") | |
return auto_load_when_examples_change(video1, video2) | |
# Auto-load when both video inputs change (triggered by examples) | |
video1_input.change( | |
fn=enhanced_auto_load, | |
inputs=[video1_input, video2_input], | |
outputs=[ | |
status_output, | |
frame_slider, | |
frame1_output, | |
frame2_output, | |
frame_info, | |
ssim_plot, | |
psnr_plot, | |
mse_plot, | |
phash_plot, | |
color_plot, | |
sharpness_plot, | |
overall_plot, | |
frame_controls, | |
frame_display, | |
metrics_section, | |
info_section, | |
], | |
) | |
video2_input.change( | |
fn=enhanced_auto_load, | |
inputs=[video1_input, video2_input], | |
outputs=[ | |
status_output, | |
frame_slider, | |
frame1_output, | |
frame2_output, | |
frame_info, | |
ssim_plot, | |
psnr_plot, | |
mse_plot, | |
phash_plot, | |
color_plot, | |
sharpness_plot, | |
overall_plot, | |
frame_controls, | |
frame_display, | |
metrics_section, | |
info_section, | |
], | |
) | |
# Manual load button event handler with debug | |
def debug_load_videos_handler(video1, video2): | |
print(f"DEBUG: Load button clicked! video1={video1}, video2={video2}") | |
return load_videos_handler(video1, video2) | |
load_btn.click( | |
fn=debug_load_videos_handler, | |
inputs=[video1_input, video2_input], | |
outputs=[ | |
status_output, | |
frame_slider, | |
frame1_output, | |
frame2_output, | |
frame_info, | |
ssim_plot, | |
psnr_plot, | |
mse_plot, | |
phash_plot, | |
color_plot, | |
sharpness_plot, | |
overall_plot, | |
frame_controls, | |
frame_display, | |
metrics_section, | |
info_section, | |
], | |
) | |
frame_slider.change( | |
fn=update_frames, | |
inputs=[frame_slider], | |
outputs=[ | |
frame1_output, | |
frame2_output, | |
frame_info, | |
ssim_plot, | |
psnr_plot, | |
mse_plot, | |
phash_plot, | |
color_plot, | |
sharpness_plot, | |
overall_plot, | |
], | |
) | |
return app | |
def main(): | |
app = create_app() | |
app.launch( | |
server_name="0.0.0.0", | |
server_port=7860, | |
share=False, | |
) | |
if __name__ == "__main__": | |
main() | |