import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification from sentence_transformers import SentenceTransformer import numpy as np # Load models llm = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B") llm_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") reranker = AutoModelForSequenceClassification.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2") reranker_tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2") retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def generate_query(document): prompt = f"Generate a relevant search query for the following document:\n\n{document}\n\nQuery:" input_ids = llm_tokenizer.encode(prompt, return_tensors="pt") output = llm.generate( input_ids, max_new_tokens=30, num_return_sequences=5, num_beams=5, no_repeat_ngram_size=2, early_stopping=True ) queries = [llm_tokenizer.decode(seq[input_ids.shape[1]:], skip_special_tokens=True) for seq in output] return queries def rerank_pairs(queries, document): pairs = [[query, document] for query in queries] inputs = reranker_tokenizer(pairs, padding=True, truncation=True, return_tensors="pt") scores = reranker(**inputs).logits.squeeze(-1) best_query = queries[torch.argmax(scores)] return best_query def train_retriever(query_doc_pairs): # This is a placeholder for the actual training process queries, docs = zip(*query_doc_pairs) query_embeddings = retriever.encode(queries) doc_embeddings = retriever.encode(docs) similarity = np.dot(query_embeddings, doc_embeddings.T) return f"Retriever trained on {len(query_doc_pairs)} pairs. Average similarity: {similarity.mean():.4f}" def inpars_v2(document): queries = generate_query(document) best_query = rerank_pairs(queries, document) result = train_retriever([(best_query, document)]) return f"Generated query: {best_query}\n\n{result}" # Markdown description of the InPars-v2 paper paper_description = """ # InPars-v2: Large Language Models as Efficient Dataset Generators for Information Retrieval **Abstract Link:** [https://arxiv.org/abs/2301.01820](https://arxiv.org/abs/2301.01820) **PDF Link:** [https://arxiv.org/pdf/2301.01820](https://arxiv.org/pdf/2301.01820) **Authors:** Vitor Jeronymo, Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, Roberto Lotufo, Jakub Zavrel, Rodrigo Nogueira **Publication Date:** 26 May 2023 ## Abstract Recently, InPars introduced a method to efficiently use large language models (LLMs) in information retrieval tasks: via few-shot examples, an LLM is induced to generate relevant queries for documents. These synthetic query-document pairs can then be used to train a retriever. However, InPars and, more recently, Promptagator, rely on proprietary LLMs such as GPT-3 and FLAN to generate such datasets. In this work we introduce InPars-v2, a dataset generator that uses open-source LLMs and existing powerful rerankers to select synthetic query-document pairs for training. A simple BM25 retrieval pipeline followed by a monoT5 reranker finetuned on InPars-v2 data achieves new state-of-the-art results on the BEIR benchmark. To allow researchers to further improve our method, we open source the code, synthetic data, and finetuned models: [https://github.com/zetaalphavector/inPars/tree/master/tpu](https://github.com/zetaalphavector/inPars/tree/master/tpu) ## Key Features of InPars-v2 1. Uses open-source LLMs for query generation 2. Employs powerful rerankers to select high-quality synthetic query-document pairs 3. Achieves state-of-the-art results on the BEIR benchmark 4. Provides open-source code, synthetic data, and finetuned models This demo provides a simplified implementation of the InPars-v2 concept, showcasing query generation, reranking, and retriever training. """ iface = gr.Interface( fn=inpars_v2, inputs=gr.Textbox(lines=5, label="Input Document"), outputs=gr.Textbox(label="Result"), title="InPars-v2 Demo", description=paper_description, article="This is a minimal implementation of the InPars-v2 concept. For the full implementation and more details, please refer to the original paper and GitHub repository." ) iface.launch()