import gradio as gr import torch from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification from sentence_transformers import SentenceTransformer import numpy as np # Load models llm = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B") llm_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") reranker = AutoModelForSequenceClassification.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2") reranker_tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2") retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') def generate_query(document): prompt = f"Generate a relevant search query for the following document:\n\n{document}\n\nQuery:" input_ids = llm_tokenizer.encode(prompt, return_tensors="pt") output = llm.generate(input_ids, max_length=50, num_return_sequences=5) queries = [llm_tokenizer.decode(seq, skip_special_tokens=True) for seq in output] return queries def rerank_pairs(queries, document): pairs = [[query, document] for query in queries] inputs = reranker_tokenizer(pairs, padding=True, truncation=True, return_tensors="pt") scores = reranker(**inputs).logits.squeeze(-1) best_query = queries[torch.argmax(scores)] return best_query def train_retriever(query_doc_pairs): # This is a placeholder for the actual training process queries, docs = zip(*query_doc_pairs) query_embeddings = retriever.encode(queries) doc_embeddings = retriever.encode(docs) similarity = np.dot(query_embeddings, doc_embeddings.T) return f"Retriever trained on {len(query_doc_pairs)} pairs. Average similarity: {similarity.mean():.4f}" def inpars_v2(document): queries = generate_query(document) best_query = rerank_pairs(queries, document) result = train_retriever([(best_query, document)]) return f"Generated query: {best_query}\n\n{result}" iface = gr.Interface( fn=inpars_v2, inputs=gr.Textbox(lines=5, label="Input Document"), outputs=gr.Textbox(label="Result"), title="InPars-v2 Demo", description="Generate queries and train a retriever using LLMs and rerankers." ) iface.launch()