|
import gradio as gr |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification |
|
from sentence_transformers import SentenceTransformer |
|
import numpy as np |
|
|
|
|
|
llm = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B") |
|
llm_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") |
|
reranker = AutoModelForSequenceClassification.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2") |
|
reranker_tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2") |
|
retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
def generate_query(document): |
|
prompt = f"Generate a relevant search query for the following document:\n\n{document}\n\nQuery:" |
|
input_ids = llm_tokenizer.encode(prompt, return_tensors="pt") |
|
output = llm.generate( |
|
input_ids, |
|
max_new_tokens=30, |
|
num_return_sequences=5, |
|
num_beams=5, |
|
no_repeat_ngram_size=2, |
|
early_stopping=True |
|
) |
|
queries = [llm_tokenizer.decode(seq[input_ids.shape[1]:], skip_special_tokens=True) for seq in output] |
|
return queries |
|
|
|
def rerank_pairs(queries, document): |
|
pairs = [[query, document] for query in queries] |
|
inputs = reranker_tokenizer(pairs, padding=True, truncation=True, return_tensors="pt") |
|
scores = reranker(**inputs).logits.squeeze(-1) |
|
best_query = queries[torch.argmax(scores)] |
|
return best_query |
|
|
|
def train_retriever(query_doc_pairs): |
|
|
|
queries, docs = zip(*query_doc_pairs) |
|
query_embeddings = retriever.encode(queries) |
|
doc_embeddings = retriever.encode(docs) |
|
similarity = np.dot(query_embeddings, doc_embeddings.T) |
|
return f"Retriever trained on {len(query_doc_pairs)} pairs. Average similarity: {similarity.mean():.4f}" |
|
|
|
def inpars_v2(document): |
|
queries = generate_query(document) |
|
best_query = rerank_pairs(queries, document) |
|
result = train_retriever([(best_query, document)]) |
|
return f"Generated query: {best_query}\n\n{result}" |
|
|
|
|
|
paper_description = """ |
|
# InPars-v2: Large Language Models as Efficient Dataset Generators for Information Retrieval |
|
|
|
**Abstract Link:** [https://arxiv.org/abs/2301.01820](https://arxiv.org/abs/2301.01820) |
|
**PDF Link:** [https://arxiv.org/pdf/2301.01820](https://arxiv.org/pdf/2301.01820) |
|
|
|
**Authors:** Vitor Jeronymo, Luiz Bonifacio, Hugo Abonizio, Marzieh Fadaee, Roberto Lotufo, Jakub Zavrel, Rodrigo Nogueira |
|
|
|
**Publication Date:** 26 May 2023 |
|
|
|
## Abstract |
|
|
|
Recently, InPars introduced a method to efficiently use large language models (LLMs) in information retrieval tasks: via few-shot examples, an LLM is induced to generate relevant queries for documents. These synthetic query-document pairs can then be used to train a retriever. However, InPars and, more recently, Promptagator, rely on proprietary LLMs such as GPT-3 and FLAN to generate such datasets. In this work we introduce InPars-v2, a dataset generator that uses open-source LLMs and existing powerful rerankers to select synthetic query-document pairs for training. A simple BM25 retrieval pipeline followed by a monoT5 reranker finetuned on InPars-v2 data achieves new state-of-the-art results on the BEIR benchmark. To allow researchers to further improve our method, we open source the code, synthetic data, and finetuned models: [https://github.com/zetaalphavector/inPars/tree/master/tpu](https://github.com/zetaalphavector/inPars/tree/master/tpu) |
|
|
|
## Key Features of InPars-v2 |
|
|
|
1. Uses open-source LLMs for query generation |
|
2. Employs powerful rerankers to select high-quality synthetic query-document pairs |
|
3. Achieves state-of-the-art results on the BEIR benchmark |
|
4. Provides open-source code, synthetic data, and finetuned models |
|
|
|
This demo provides a simplified implementation of the InPars-v2 concept, showcasing query generation, reranking, and retriever training. |
|
""" |
|
|
|
iface = gr.Interface( |
|
fn=inpars_v2, |
|
inputs=gr.Textbox(lines=5, label="Input Document"), |
|
outputs=gr.Textbox(label="Result"), |
|
title="InPars-v2 Demo", |
|
description=paper_description, |
|
article="This is a minimal implementation of the InPars-v2 concept. For the full implementation and more details, please refer to the original paper and GitHub repository." |
|
) |
|
|
|
iface.launch() |