|
import gradio as gr |
|
import torch |
|
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification |
|
from sentence_transformers import SentenceTransformer |
|
import numpy as np |
|
|
|
|
|
llm = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B") |
|
llm_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") |
|
reranker = AutoModelForSequenceClassification.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2") |
|
reranker_tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2") |
|
retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') |
|
|
|
def generate_query(document): |
|
prompt = f"Generate a relevant search query for the following document:\n\n{document}\n\nQuery:" |
|
input_ids = llm_tokenizer.encode(prompt, return_tensors="pt") |
|
output = llm.generate(input_ids, max_length=50, num_return_sequences=5) |
|
queries = [llm_tokenizer.decode(seq, skip_special_tokens=True) for seq in output] |
|
return queries |
|
|
|
def rerank_pairs(queries, document): |
|
pairs = [[query, document] for query in queries] |
|
inputs = reranker_tokenizer(pairs, padding=True, truncation=True, return_tensors="pt") |
|
scores = reranker(**inputs).logits.squeeze(-1) |
|
best_query = queries[torch.argmax(scores)] |
|
return best_query |
|
|
|
def train_retriever(query_doc_pairs): |
|
|
|
queries, docs = zip(*query_doc_pairs) |
|
query_embeddings = retriever.encode(queries) |
|
doc_embeddings = retriever.encode(docs) |
|
similarity = np.dot(query_embeddings, doc_embeddings.T) |
|
return f"Retriever trained on {len(query_doc_pairs)} pairs. Average similarity: {similarity.mean():.4f}" |
|
|
|
def inpars_v2(document): |
|
queries = generate_query(document) |
|
best_query = rerank_pairs(queries, document) |
|
result = train_retriever([(best_query, document)]) |
|
return f"Generated query: {best_query}\n\n{result}" |
|
|
|
iface = gr.Interface( |
|
fn=inpars_v2, |
|
inputs=gr.Textbox(lines=5, label="Input Document"), |
|
outputs=gr.Textbox(label="Result"), |
|
title="InPars-v2 Demo", |
|
description="Generate queries and train a retriever using LLMs and rerankers." |
|
) |
|
|
|
iface.launch() |