SOTA-IR-Gradio / app.py
awacke1's picture
Create app.py
b7bc0a0 verified
raw
history blame
2.2 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification
from sentence_transformers import SentenceTransformer
import numpy as np
# Load models
llm = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B")
llm_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B")
reranker = AutoModelForSequenceClassification.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2")
reranker_tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2")
retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2')
def generate_query(document):
prompt = f"Generate a relevant search query for the following document:\n\n{document}\n\nQuery:"
input_ids = llm_tokenizer.encode(prompt, return_tensors="pt")
output = llm.generate(input_ids, max_length=50, num_return_sequences=5)
queries = [llm_tokenizer.decode(seq, skip_special_tokens=True) for seq in output]
return queries
def rerank_pairs(queries, document):
pairs = [[query, document] for query in queries]
inputs = reranker_tokenizer(pairs, padding=True, truncation=True, return_tensors="pt")
scores = reranker(**inputs).logits.squeeze(-1)
best_query = queries[torch.argmax(scores)]
return best_query
def train_retriever(query_doc_pairs):
# This is a placeholder for the actual training process
queries, docs = zip(*query_doc_pairs)
query_embeddings = retriever.encode(queries)
doc_embeddings = retriever.encode(docs)
similarity = np.dot(query_embeddings, doc_embeddings.T)
return f"Retriever trained on {len(query_doc_pairs)} pairs. Average similarity: {similarity.mean():.4f}"
def inpars_v2(document):
queries = generate_query(document)
best_query = rerank_pairs(queries, document)
result = train_retriever([(best_query, document)])
return f"Generated query: {best_query}\n\n{result}"
iface = gr.Interface(
fn=inpars_v2,
inputs=gr.Textbox(lines=5, label="Input Document"),
outputs=gr.Textbox(label="Result"),
title="InPars-v2 Demo",
description="Generate queries and train a retriever using LLMs and rerankers."
)
iface.launch()