Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -2,20 +2,60 @@ import gradio as gr
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import torch
|
5 |
-
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
6 |
-
from transformers import BertTokenizerFast
|
7 |
import matplotlib.pyplot as plt
|
8 |
import json
|
|
|
|
|
|
|
9 |
|
10 |
-
#
|
11 |
-
tokenizer =
|
12 |
-
ner_pipeline =
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
|
20 |
def get_token_colors(token_type):
|
21 |
colors = {
|
@@ -41,7 +81,10 @@ def simulate_historical_data(token):
|
|
41 |
values = [45, 50, 60, 70, 75, 80]
|
42 |
else:
|
43 |
# Standard pattern for common words
|
44 |
-
|
|
|
|
|
|
|
45 |
noise = np.random.normal(0, 5, 6)
|
46 |
values = [max(5, min(95, base + i*5 + n)) for i, n in enumerate(noise)]
|
47 |
|
@@ -60,7 +103,7 @@ def generate_origin_data(token):
|
|
60 |
]
|
61 |
|
62 |
# Deterministic selection based on the token
|
63 |
-
index =
|
64 |
origin = origins[index]
|
65 |
|
66 |
note = f"First appeared in {origin['era']} texts derived from {origin['language']}."
|
@@ -105,155 +148,219 @@ def analyze_token_types(tokens):
|
|
105 |
return processed_tokens
|
106 |
|
107 |
def plot_historical_data(historical_data):
|
108 |
-
"""Create a plot of historical usage data"""
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
122 |
|
123 |
-
def
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
|
139 |
-
|
140 |
-
full_token_analysis = []
|
141 |
-
for token in token_analysis:
|
142 |
-
# Find POS tag for this token
|
143 |
-
pos_tag = "NOUN" # Default
|
144 |
-
for pos_result in pos_results:
|
145 |
-
if pos_result["word"].lower() == token["text"]:
|
146 |
-
pos_tag = pos_result["entity"]
|
147 |
-
break
|
148 |
-
|
149 |
-
# Find entity type if any
|
150 |
-
entity_type = None
|
151 |
-
for ner_result in ner_results:
|
152 |
-
if ner_result["word"].lower() == token["text"]:
|
153 |
-
entity_type = ner_result["entity"]
|
154 |
-
break
|
155 |
-
|
156 |
-
# Generate historical data
|
157 |
-
historical_data = simulate_historical_data(token["text"])
|
158 |
-
|
159 |
-
# Generate origin data
|
160 |
-
origin = generate_origin_data(token["text"])
|
161 |
-
|
162 |
-
# Calculate importance (simplified algorithm)
|
163 |
-
importance = 60 + (len(token["text"]) * 2)
|
164 |
-
importance = min(95, importance)
|
165 |
-
|
166 |
-
# Generate related terms (simplified)
|
167 |
-
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
|
168 |
-
|
169 |
-
full_token_analysis.append({
|
170 |
-
"token": token["text"],
|
171 |
-
"type": token["type"],
|
172 |
-
"posTag": pos_tag,
|
173 |
-
"entityType": entity_type,
|
174 |
-
"importance": importance,
|
175 |
-
"historicalData": historical_data,
|
176 |
-
"origin": origin,
|
177 |
-
"relatedTerms": related_terms
|
178 |
-
})
|
179 |
|
180 |
-
#
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
|
|
|
|
|
|
|
|
185 |
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
"
|
190 |
-
|
191 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
192 |
]
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
"keyword": keyword,
|
232 |
-
"tokenAnalysis": full_token_analysis,
|
233 |
-
"intentAnalysis": intent_analysis,
|
234 |
-
"evolutionPotential": evolution_potential,
|
235 |
-
"predictedTrends": trends
|
236 |
-
}
|
237 |
-
|
238 |
-
return token_viz_html, analysis_html, json_results, evolution_chart, full_token_analysis
|
239 |
-
|
240 |
-
def create_evolution_chart(data):
|
241 |
-
"""Create an evolution chart from data"""
|
242 |
-
df = pd.DataFrame(data)
|
243 |
-
|
244 |
-
plt.figure(figsize=(10, 5))
|
245 |
-
plt.plot(df['month'], df['searchVolume'], marker='o', label='Search Volume')
|
246 |
-
plt.plot(df['month'], df['competitionScore']*20, marker='s', label='Competition Score')
|
247 |
-
plt.plot(df['month'], df['intentClarity']*20, marker='^', label='Intent Clarity')
|
248 |
-
|
249 |
-
plt.title('Predicted Evolution')
|
250 |
-
plt.xlabel('Month')
|
251 |
-
plt.ylabel('Value')
|
252 |
-
plt.legend()
|
253 |
-
plt.grid(True, linestyle='--', alpha=0.7)
|
254 |
-
plt.tight_layout()
|
255 |
|
256 |
-
|
|
|
|
|
|
|
257 |
|
258 |
def generate_token_visualization_html(token_analysis, full_analysis):
|
259 |
"""Generate HTML for token visualization"""
|
@@ -469,6 +576,10 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
|
469 |
with gr.Row():
|
470 |
with gr.Column():
|
471 |
input_text = gr.Textbox(label="Enter keyword to analyze", placeholder="e.g. artificial intelligence")
|
|
|
|
|
|
|
|
|
472 |
analyze_btn = gr.Button("Analyze DNA", variant="primary")
|
473 |
|
474 |
with gr.Row():
|
@@ -492,9 +603,15 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
|
492 |
|
493 |
# Set up event handlers
|
494 |
analyze_btn.click(
|
|
|
|
|
|
|
495 |
analyze_keyword,
|
496 |
inputs=[input_text],
|
497 |
-
outputs=[token_viz_html, analysis_html, json_output, evolution_chart
|
|
|
|
|
|
|
498 |
)
|
499 |
|
500 |
# Example buttons
|
@@ -503,11 +620,18 @@ with gr.Blocks(css="footer {visibility: hidden}") as demo:
|
|
503 |
lambda btn_text: btn_text,
|
504 |
inputs=[btn],
|
505 |
outputs=[input_text]
|
|
|
|
|
|
|
506 |
).then(
|
507 |
analyze_keyword,
|
508 |
inputs=[input_text],
|
509 |
-
outputs=[token_viz_html, analysis_html, json_output, evolution_chart
|
|
|
|
|
|
|
510 |
)
|
511 |
|
512 |
# Launch the app
|
513 |
-
|
|
|
|
2 |
import numpy as np
|
3 |
import pandas as pd
|
4 |
import torch
|
|
|
|
|
5 |
import matplotlib.pyplot as plt
|
6 |
import json
|
7 |
+
import time
|
8 |
+
import os
|
9 |
+
from functools import partial
|
10 |
|
11 |
+
# Global variables to store models
|
12 |
+
tokenizer = None
|
13 |
+
ner_pipeline = None
|
14 |
+
pos_pipeline = None
|
15 |
+
intent_classifier = None
|
16 |
+
models_loaded = False
|
17 |
|
18 |
+
def load_models(progress=gr.Progress()):
|
19 |
+
"""Lazy-load models only when needed"""
|
20 |
+
global tokenizer, ner_pipeline, pos_pipeline, intent_classifier, models_loaded
|
21 |
+
|
22 |
+
if models_loaded:
|
23 |
+
return True
|
24 |
+
|
25 |
+
try:
|
26 |
+
progress(0.1, desc="Loading models...")
|
27 |
+
|
28 |
+
# Use smaller models and load them sequentially to reduce memory pressure
|
29 |
+
from transformers import AutoTokenizer, pipeline
|
30 |
+
|
31 |
+
progress(0.2, desc="Loading tokenizer...")
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
33 |
+
|
34 |
+
progress(0.4, desc="Loading NER model...")
|
35 |
+
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
|
36 |
+
|
37 |
+
progress(0.6, desc="Loading POS model...")
|
38 |
+
# Use smaller POS model
|
39 |
+
from transformers import AutoModelForTokenClassification, BertTokenizerFast
|
40 |
+
pos_model = AutoModelForTokenClassification.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
|
41 |
+
pos_tokenizer = BertTokenizerFast.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
|
42 |
+
pos_pipeline = pipeline("token-classification", model=pos_model, tokenizer=pos_tokenizer)
|
43 |
+
|
44 |
+
progress(0.8, desc="Loading intent classifier...")
|
45 |
+
# Use a smaller model for zero-shot classification
|
46 |
+
intent_classifier = pipeline(
|
47 |
+
"zero-shot-classification",
|
48 |
+
model="typeform/distilbert-base-uncased-mnli", # Smaller than BART
|
49 |
+
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
|
50 |
+
)
|
51 |
+
|
52 |
+
progress(1.0, desc="Models loaded successfully!")
|
53 |
+
models_loaded = True
|
54 |
+
return True
|
55 |
+
|
56 |
+
except Exception as e:
|
57 |
+
print(f"Error loading models: {str(e)}")
|
58 |
+
return f"Error: {str(e)}"
|
59 |
|
60 |
def get_token_colors(token_type):
|
61 |
colors = {
|
|
|
81 |
values = [45, 50, 60, 70, 75, 80]
|
82 |
else:
|
83 |
# Standard pattern for common words
|
84 |
+
# Use token hash value modulo instead of hash() directly to avoid different results across runs
|
85 |
+
base = 50 + (sum(ord(c) for c in token) % 30)
|
86 |
+
# Use a fixed seed for reproducibility
|
87 |
+
np.random.seed(sum(ord(c) for c in token))
|
88 |
noise = np.random.normal(0, 5, 6)
|
89 |
values = [max(5, min(95, base + i*5 + n)) for i, n in enumerate(noise)]
|
90 |
|
|
|
103 |
]
|
104 |
|
105 |
# Deterministic selection based on the token
|
106 |
+
index = sum(ord(c) for c in token) % len(origins)
|
107 |
origin = origins[index]
|
108 |
|
109 |
note = f"First appeared in {origin['era']} texts derived from {origin['language']}."
|
|
|
148 |
return processed_tokens
|
149 |
|
150 |
def plot_historical_data(historical_data):
|
151 |
+
"""Create a plot of historical usage data, with error handling"""
|
152 |
+
try:
|
153 |
+
eras = [item[0] for item in historical_data]
|
154 |
+
values = [item[1] for item in historical_data]
|
155 |
+
|
156 |
+
plt.figure(figsize=(8, 3))
|
157 |
+
plt.bar(eras, values, color='skyblue')
|
158 |
+
plt.title('Historical Usage')
|
159 |
+
plt.xlabel('Era')
|
160 |
+
plt.ylabel('Usage Level')
|
161 |
+
plt.ylim(0, 100)
|
162 |
+
plt.xticks(rotation=45)
|
163 |
+
plt.tight_layout()
|
164 |
+
|
165 |
+
return plt
|
166 |
+
except Exception as e:
|
167 |
+
print(f"Error in plot_historical_data: {str(e)}")
|
168 |
+
# Return a simple error plot
|
169 |
+
plt.figure(figsize=(8, 3))
|
170 |
+
plt.text(0.5, 0.5, f"Error creating plot: {str(e)}",
|
171 |
+
horizontalalignment='center', verticalalignment='center')
|
172 |
+
plt.axis('off')
|
173 |
+
return plt
|
174 |
|
175 |
+
def create_evolution_chart(data):
|
176 |
+
"""Create an evolution chart from data, with error handling"""
|
177 |
+
try:
|
178 |
+
df = pd.DataFrame(data)
|
179 |
+
|
180 |
+
plt.figure(figsize=(10, 5))
|
181 |
+
plt.plot(df['month'], df['searchVolume'], marker='o', label='Search Volume')
|
182 |
+
plt.plot(df['month'], df['competitionScore']*20, marker='s', label='Competition Score')
|
183 |
+
plt.plot(df['month'], df['intentClarity']*20, marker='^', label='Intent Clarity')
|
184 |
+
|
185 |
+
plt.title('Predicted Evolution')
|
186 |
+
plt.xlabel('Month')
|
187 |
+
plt.ylabel('Value')
|
188 |
+
plt.legend()
|
189 |
+
plt.grid(True, linestyle='--', alpha=0.7)
|
190 |
+
plt.tight_layout()
|
191 |
+
|
192 |
+
return plt
|
193 |
+
except Exception as e:
|
194 |
+
print(f"Error in create_evolution_chart: {str(e)}")
|
195 |
+
# Return a simple error plot
|
196 |
+
plt.figure(figsize=(10, 5))
|
197 |
+
plt.text(0.5, 0.5, f"Error creating chart: {str(e)}",
|
198 |
+
horizontalalignment='center', verticalalignment='center')
|
199 |
+
plt.axis('off')
|
200 |
+
return plt
|
201 |
+
|
202 |
+
def analyze_keyword(keyword, progress=gr.Progress()):
|
203 |
+
"""Main function to analyze a keyword"""
|
204 |
+
if not keyword or not keyword.strip():
|
205 |
+
return (
|
206 |
+
"<div>Please enter a keyword to analyze</div>",
|
207 |
+
"<div>Please enter a keyword to analyze</div>",
|
208 |
+
None,
|
209 |
+
None
|
210 |
+
)
|
211 |
|
212 |
+
progress(0.1, desc="Starting analysis...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
213 |
|
214 |
+
# Load models if not already loaded
|
215 |
+
model_status = load_models(progress)
|
216 |
+
if isinstance(model_status, str) and model_status.startswith("Error"):
|
217 |
+
return (
|
218 |
+
f"<div style='color:red;'>{model_status}</div>",
|
219 |
+
f"<div style='color:red;'>{model_status}</div>",
|
220 |
+
None,
|
221 |
+
None
|
222 |
+
)
|
223 |
|
224 |
+
try:
|
225 |
+
# Basic tokenization - just split on spaces for simplicity
|
226 |
+
words = keyword.strip().lower().split()
|
227 |
+
progress(0.2, desc="Analyzing tokens...")
|
228 |
+
|
229 |
+
# Get token types
|
230 |
+
token_analysis = analyze_token_types(words)
|
231 |
+
|
232 |
+
progress(0.3, desc="Running NER...")
|
233 |
+
# Get NER tags - handle potential errors
|
234 |
+
try:
|
235 |
+
ner_results = ner_pipeline(keyword)
|
236 |
+
except Exception as e:
|
237 |
+
print(f"NER error: {str(e)}")
|
238 |
+
ner_results = []
|
239 |
+
|
240 |
+
progress(0.4, desc="Running POS tagging...")
|
241 |
+
# Get POS tags - handle potential errors
|
242 |
+
try:
|
243 |
+
pos_results = pos_pipeline(keyword)
|
244 |
+
except Exception as e:
|
245 |
+
print(f"POS error: {str(e)}")
|
246 |
+
pos_results = []
|
247 |
+
|
248 |
+
# Process and organize results
|
249 |
+
full_token_analysis = []
|
250 |
+
for token in token_analysis:
|
251 |
+
# Find POS tag for this token
|
252 |
+
pos_tag = "NOUN" # Default
|
253 |
+
for pos_result in pos_results:
|
254 |
+
if pos_result["word"].lower() == token["text"]:
|
255 |
+
pos_tag = pos_result["entity"]
|
256 |
+
break
|
257 |
+
|
258 |
+
# Find entity type if any
|
259 |
+
entity_type = None
|
260 |
+
for ner_result in ner_results:
|
261 |
+
if ner_result["word"].lower() == token["text"]:
|
262 |
+
entity_type = ner_result["entity"]
|
263 |
+
break
|
264 |
+
|
265 |
+
# Generate historical data
|
266 |
+
historical_data = simulate_historical_data(token["text"])
|
267 |
+
|
268 |
+
# Generate origin data
|
269 |
+
origin = generate_origin_data(token["text"])
|
270 |
+
|
271 |
+
# Calculate importance (simplified algorithm)
|
272 |
+
importance = 60 + (len(token["text"]) * 2)
|
273 |
+
importance = min(95, importance)
|
274 |
+
|
275 |
+
# Generate related terms (simplified)
|
276 |
+
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
|
277 |
+
|
278 |
+
full_token_analysis.append({
|
279 |
+
"token": token["text"],
|
280 |
+
"type": token["type"],
|
281 |
+
"posTag": pos_tag,
|
282 |
+
"entityType": entity_type,
|
283 |
+
"importance": importance,
|
284 |
+
"historicalData": historical_data,
|
285 |
+
"origin": origin,
|
286 |
+
"relatedTerms": related_terms
|
287 |
+
})
|
288 |
+
|
289 |
+
progress(0.6, desc="Analyzing intent...")
|
290 |
+
# Intent analysis - handle potential errors
|
291 |
+
try:
|
292 |
+
intent_result = intent_classifier(
|
293 |
+
keyword,
|
294 |
+
candidate_labels=["informational", "navigational", "transactional"]
|
295 |
+
)
|
296 |
+
|
297 |
+
intent_analysis = {
|
298 |
+
"type": intent_result["labels"][0].capitalize(),
|
299 |
+
"strength": round(intent_result["scores"][0] * 100),
|
300 |
+
"mutations": [
|
301 |
+
f"{intent_result['labels'][0]}-variation-1",
|
302 |
+
f"{intent_result['labels'][0]}-variation-2"
|
303 |
+
]
|
304 |
+
}
|
305 |
+
except Exception as e:
|
306 |
+
print(f"Intent classification error: {str(e)}")
|
307 |
+
intent_analysis = {
|
308 |
+
"type": "Informational", # Default fallback
|
309 |
+
"strength": 70,
|
310 |
+
"mutations": ["fallback-variation-1", "fallback-variation-2"]
|
311 |
+
}
|
312 |
+
|
313 |
+
# Evolution potential (simplified calculation)
|
314 |
+
evolution_potential = min(95, 65 + (len(keyword) % 30))
|
315 |
+
|
316 |
+
# Predicted trends (simplified)
|
317 |
+
trends = [
|
318 |
+
"Voice search adaptation",
|
319 |
+
"Visual search integration"
|
320 |
]
|
321 |
+
|
322 |
+
# Evolution chart data (simulated)
|
323 |
+
evolution_data = [
|
324 |
+
{"month": "Jan", "searchVolume": 1000, "competitionScore": 45, "intentClarity": 80},
|
325 |
+
{"month": "Feb", "searchVolume": 1200, "competitionScore": 48, "intentClarity": 82},
|
326 |
+
{"month": "Mar", "searchVolume": 1100, "competitionScore": 52, "intentClarity": 85},
|
327 |
+
{"month": "Apr", "searchVolume": 1400, "competitionScore": 55, "intentClarity": 88},
|
328 |
+
{"month": "May", "searchVolume": 1800, "competitionScore": 58, "intentClarity": 90},
|
329 |
+
{"month": "Jun", "searchVolume": 2200, "competitionScore": 60, "intentClarity": 92}
|
330 |
+
]
|
331 |
+
|
332 |
+
progress(0.8, desc="Creating visualizations...")
|
333 |
+
# Create plots
|
334 |
+
evolution_chart = create_evolution_chart(evolution_data)
|
335 |
+
|
336 |
+
# Generate HTML for token visualization
|
337 |
+
token_viz_html = generate_token_visualization_html(token_analysis, full_token_analysis)
|
338 |
+
|
339 |
+
# Generate HTML for full analysis
|
340 |
+
analysis_html = generate_full_analysis_html(
|
341 |
+
keyword,
|
342 |
+
full_token_analysis,
|
343 |
+
intent_analysis,
|
344 |
+
evolution_potential,
|
345 |
+
trends
|
346 |
+
)
|
347 |
+
|
348 |
+
# Generate JSON results
|
349 |
+
json_results = {
|
350 |
+
"keyword": keyword,
|
351 |
+
"tokenAnalysis": full_token_analysis,
|
352 |
+
"intentAnalysis": intent_analysis,
|
353 |
+
"evolutionPotential": evolution_potential,
|
354 |
+
"predictedTrends": trends
|
355 |
+
}
|
356 |
+
|
357 |
+
progress(1.0, desc="Analysis complete!")
|
358 |
+
return token_viz_html, analysis_html, json_results, evolution_chart
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
359 |
|
360 |
+
except Exception as e:
|
361 |
+
error_message = f"<div style='color:red;padding:20px;'>Error analyzing keyword: {str(e)}</div>"
|
362 |
+
print(f"Error in analyze_keyword: {str(e)}")
|
363 |
+
return error_message, error_message, None, None
|
364 |
|
365 |
def generate_token_visualization_html(token_analysis, full_analysis):
|
366 |
"""Generate HTML for token visualization"""
|
|
|
576 |
with gr.Row():
|
577 |
with gr.Column():
|
578 |
input_text = gr.Textbox(label="Enter keyword to analyze", placeholder="e.g. artificial intelligence")
|
579 |
+
|
580 |
+
# Add loading indicator
|
581 |
+
status_html = gr.HTML('<div style="color:gray;text-align:center;">Enter a keyword and click "Analyze DNA"</div>')
|
582 |
+
|
583 |
analyze_btn = gr.Button("Analyze DNA", variant="primary")
|
584 |
|
585 |
with gr.Row():
|
|
|
603 |
|
604 |
# Set up event handlers
|
605 |
analyze_btn.click(
|
606 |
+
lambda: '<div style="color:blue;text-align:center;">Loading models and analyzing... This may take a moment.</div>',
|
607 |
+
outputs=status_html
|
608 |
+
).then(
|
609 |
analyze_keyword,
|
610 |
inputs=[input_text],
|
611 |
+
outputs=[token_viz_html, analysis_html, json_output, evolution_chart]
|
612 |
+
).then(
|
613 |
+
lambda: '<div style="color:green;text-align:center;">Analysis complete!</div>',
|
614 |
+
outputs=status_html
|
615 |
)
|
616 |
|
617 |
# Example buttons
|
|
|
620 |
lambda btn_text: btn_text,
|
621 |
inputs=[btn],
|
622 |
outputs=[input_text]
|
623 |
+
).then(
|
624 |
+
lambda: '<div style="color:blue;text-align:center;">Loading models and analyzing... This may take a moment.</div>',
|
625 |
+
outputs=status_html
|
626 |
).then(
|
627 |
analyze_keyword,
|
628 |
inputs=[input_text],
|
629 |
+
outputs=[token_viz_html, analysis_html, json_output, evolution_chart]
|
630 |
+
).then(
|
631 |
+
lambda: '<div style="color:green;text-align:center;">Analysis complete!</div>',
|
632 |
+
outputs=status_html
|
633 |
)
|
634 |
|
635 |
# Launch the app
|
636 |
+
if __name__ == "__main__":
|
637 |
+
demo.launch()
|