Spaces:
Sleeping
Sleeping
Update app.py
Browse filesadded voice function back as it was left out when aisnipper colors were added
app.py
CHANGED
|
@@ -1,4 +1,3 @@
|
|
| 1 |
-
# Your existing imports remain the same
|
| 2 |
import gradio as gr
|
| 3 |
import numpy as np
|
| 4 |
import pandas as pd
|
|
@@ -143,53 +142,6 @@ ai_snipper_css = """
|
|
| 143 |
color: var(--text-primary) !important;
|
| 144 |
}
|
| 145 |
|
| 146 |
-
/* File upload areas */
|
| 147 |
-
.gr-file-upload {
|
| 148 |
-
background: var(--bg-card) !important;
|
| 149 |
-
border: 2px dashed var(--border-accent) !important;
|
| 150 |
-
border-radius: 16px !important;
|
| 151 |
-
color: var(--text-secondary) !important;
|
| 152 |
-
transition: all 0.3s ease !important;
|
| 153 |
-
}
|
| 154 |
-
|
| 155 |
-
.gr-file-upload:hover {
|
| 156 |
-
border-color: var(--ai-cyan) !important;
|
| 157 |
-
background: var(--bg-card-hover) !important;
|
| 158 |
-
}
|
| 159 |
-
|
| 160 |
-
/* Audio input */
|
| 161 |
-
.gr-audio {
|
| 162 |
-
background: var(--gradient-card) !important;
|
| 163 |
-
border: 1px solid var(--border-primary) !important;
|
| 164 |
-
border-radius: 12px !important;
|
| 165 |
-
}
|
| 166 |
-
|
| 167 |
-
/* Sliders */
|
| 168 |
-
.gr-slider input[type="range"] {
|
| 169 |
-
background: var(--bg-secondary) !important;
|
| 170 |
-
}
|
| 171 |
-
|
| 172 |
-
.gr-slider input[type="range"]::-webkit-slider-track {
|
| 173 |
-
background: var(--bg-secondary) !important;
|
| 174 |
-
border-radius: 6px !important;
|
| 175 |
-
}
|
| 176 |
-
|
| 177 |
-
.gr-slider input[type="range"]::-webkit-slider-thumb {
|
| 178 |
-
background: var(--gradient-button) !important;
|
| 179 |
-
border: none !important;
|
| 180 |
-
border-radius: 50% !important;
|
| 181 |
-
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.2) !important;
|
| 182 |
-
}
|
| 183 |
-
|
| 184 |
-
/* Radio buttons and checkboxes */
|
| 185 |
-
.gr-radio input[type="radio"] {
|
| 186 |
-
accent-color: var(--ai-cyan) !important;
|
| 187 |
-
}
|
| 188 |
-
|
| 189 |
-
.gr-checkbox input[type="checkbox"] {
|
| 190 |
-
accent-color: var(--ai-cyan) !important;
|
| 191 |
-
}
|
| 192 |
-
|
| 193 |
/* Tabs */
|
| 194 |
.gr-tab-nav {
|
| 195 |
background: var(--gradient-card) !important;
|
|
@@ -214,215 +166,995 @@ ai_snipper_css = """
|
|
| 214 |
box-shadow: 0 2px 4px rgba(6, 182, 212, 0.3) !important;
|
| 215 |
}
|
| 216 |
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
color: var(--text-primary) !important;
|
| 220 |
-
}
|
| 221 |
-
|
| 222 |
-
/* Tab content */
|
| 223 |
-
.gr-tabitem {
|
| 224 |
background: var(--gradient-card) !important;
|
| 225 |
border: 1px solid var(--border-primary) !important;
|
| 226 |
border-radius: 12px !important;
|
| 227 |
-
padding: 1.5rem !important;
|
| 228 |
-
margin-top: 1rem !important;
|
| 229 |
}
|
| 230 |
|
| 231 |
-
|
| 232 |
-
.gr-progress {
|
| 233 |
-
background: var(--bg-secondary) !important;
|
| 234 |
-
border-radius: 6px !important;
|
| 235 |
-
}
|
| 236 |
-
|
| 237 |
-
.gr-progress-bar {
|
| 238 |
background: var(--gradient-button) !important;
|
| 239 |
-
border
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
/* Accordion */
|
| 243 |
-
.gr-accordion {
|
| 244 |
-
background: var(--gradient-card) !important;
|
| 245 |
-
border: 1px solid var(--border-primary) !important;
|
| 246 |
-
border-radius: 12px !important;
|
| 247 |
-
}
|
| 248 |
-
|
| 249 |
-
.gr-accordion summary {
|
| 250 |
-
background: var(--bg-card) !important;
|
| 251 |
-
color: var(--text-primary) !important;
|
| 252 |
-
padding: 1rem !important;
|
| 253 |
-
border-radius: 12px !important;
|
| 254 |
-
cursor: pointer !important;
|
| 255 |
-
font-weight: 600 !important;
|
| 256 |
-
}
|
| 257 |
-
|
| 258 |
-
.gr-accordion[open] summary {
|
| 259 |
-
border-bottom: 1px solid var(--border-primary) !important;
|
| 260 |
-
border-radius: 12px 12px 0 0 !important;
|
| 261 |
-
}
|
| 262 |
-
|
| 263 |
-
/* JSON output */
|
| 264 |
-
.gr-json {
|
| 265 |
-
background: var(--bg-secondary) !important;
|
| 266 |
-
border: 1px solid var(--border-primary) !important;
|
| 267 |
-
border-radius: 12px !important;
|
| 268 |
-
color: var(--text-primary) !important;
|
| 269 |
-
}
|
| 270 |
-
|
| 271 |
-
/* HTML output areas */
|
| 272 |
-
.gr-html {
|
| 273 |
-
background: var(--gradient-card) !important;
|
| 274 |
-
border: 1px solid var(--border-primary) !important;
|
| 275 |
-
border-radius: 12px !important;
|
| 276 |
-
padding: 1rem !important;
|
| 277 |
}
|
| 278 |
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
background: var(--gradient-card) !important;
|
| 282 |
-
border: 1px solid var(--border-primary) !important;
|
| 283 |
-
border-radius: 12px !important;
|
| 284 |
-
padding: 1rem !important;
|
| 285 |
}
|
| 286 |
|
| 287 |
-
/*
|
| 288 |
-
|
| 289 |
-
|
| 290 |
}
|
|
|
|
| 291 |
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
-
height: 8px;
|
| 300 |
-
}
|
| 301 |
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
|
| 305 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 311 |
|
| 312 |
-
|
| 313 |
-
|
| 314 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 315 |
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 323 |
|
| 324 |
-
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
-
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
|
| 346 |
-
|
| 347 |
-
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
|
|
|
|
|
|
| 351 |
|
| 352 |
-
|
| 353 |
-
|
| 354 |
-
|
| 355 |
-
|
| 356 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
|
| 362 |
-
|
| 363 |
-
|
| 364 |
-
|
| 365 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 366 |
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 372 |
|
| 373 |
-
|
| 374 |
-
|
| 375 |
-
|
| 376 |
-
|
| 377 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 378 |
|
| 379 |
-
|
| 380 |
-
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 384 |
|
| 385 |
-
|
| 386 |
-
|
| 387 |
-
|
| 388 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 389 |
|
| 390 |
-
|
| 391 |
-
|
| 392 |
-
|
| 393 |
-
|
| 394 |
-
}
|
| 395 |
|
| 396 |
-
|
| 397 |
-
|
| 398 |
-
|
| 399 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 400 |
|
| 401 |
-
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
""
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
|
| 410 |
-
|
| 411 |
-
|
| 412 |
-
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
|
| 416 |
-
|
| 417 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
|
| 419 |
-
|
| 420 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 421 |
|
| 422 |
-
|
| 423 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 424 |
|
| 425 |
-
#
|
| 426 |
with gr.Blocks(
|
| 427 |
css=ai_snipper_css,
|
| 428 |
title="𧬠AI Snipper Keyword DNA Analyzer",
|
|
@@ -436,9 +1168,11 @@ with gr.Blocks(
|
|
| 436 |
|
| 437 |
# Custom header with DNA theme
|
| 438 |
gr.HTML("""
|
| 439 |
-
<div
|
| 440 |
-
<h1
|
| 441 |
-
|
|
|
|
|
|
|
| 442 |
Decode the genetic structure of your keywords with AI-powered analysis
|
| 443 |
</p>
|
| 444 |
</div>
|
|
@@ -489,19 +1223,18 @@ with gr.Blocks(
|
|
| 489 |
|
| 490 |
# Status indicator with custom styling
|
| 491 |
status_html = gr.HTML(
|
| 492 |
-
'<div
|
| 493 |
)
|
| 494 |
|
| 495 |
# Main analyze button
|
| 496 |
analyze_btn = gr.Button(
|
| 497 |
"𧬠Analyze DNA",
|
| 498 |
-
variant="primary"
|
| 499 |
-
size="lg"
|
| 500 |
)
|
| 501 |
|
| 502 |
# Example buttons with custom styling
|
| 503 |
gr.Markdown("### π‘ Try These Examples")
|
| 504 |
-
with gr.Row(
|
| 505 |
example_btns = []
|
| 506 |
examples = [
|
| 507 |
"preprocessing",
|
|
@@ -533,7 +1266,7 @@ with gr.Blocks(
|
|
| 533 |
with gr.Tab("πΎ Raw Data"):
|
| 534 |
json_output = gr.JSON()
|
| 535 |
|
| 536 |
-
# Event handlers
|
| 537 |
voice_submit_btn.click(
|
| 538 |
handle_voice_input,
|
| 539 |
inputs=[audio_input],
|
|
@@ -542,14 +1275,14 @@ with gr.Blocks(
|
|
| 542 |
|
| 543 |
# Updated status messages with custom styling
|
| 544 |
analyze_btn.click(
|
| 545 |
-
lambda: '<div
|
| 546 |
outputs=status_html
|
| 547 |
).then(
|
| 548 |
analyze_keyword,
|
| 549 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
| 550 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
| 551 |
).then(
|
| 552 |
-
lambda: '<div
|
| 553 |
outputs=status_html
|
| 554 |
)
|
| 555 |
|
|
@@ -564,21 +1297,17 @@ with gr.Blocks(
|
|
| 564 |
inputs=[btn],
|
| 565 |
outputs=[input_text]
|
| 566 |
).then(
|
| 567 |
-
lambda: '<div
|
| 568 |
outputs=status_html
|
| 569 |
).then(
|
| 570 |
analyze_keyword,
|
| 571 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
| 572 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
| 573 |
).then(
|
| 574 |
-
lambda: '<div
|
| 575 |
outputs=status_html
|
| 576 |
)
|
| 577 |
|
| 578 |
# Launch configuration
|
| 579 |
if __name__ == "__main__":
|
| 580 |
-
demo.launch(
|
| 581 |
-
share=True,
|
| 582 |
-
show_error=True,
|
| 583 |
-
debug=True
|
| 584 |
-
)
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
|
|
|
| 142 |
color: var(--text-primary) !important;
|
| 143 |
}
|
| 144 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
/* Tabs */
|
| 146 |
.gr-tab-nav {
|
| 147 |
background: var(--gradient-card) !important;
|
|
|
|
| 166 |
box-shadow: 0 2px 4px rgba(6, 182, 212, 0.3) !important;
|
| 167 |
}
|
| 168 |
|
| 169 |
+
/* Other elements */
|
| 170 |
+
.gr-audio, .gr-file-upload {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
background: var(--gradient-card) !important;
|
| 172 |
border: 1px solid var(--border-primary) !important;
|
| 173 |
border-radius: 12px !important;
|
|
|
|
|
|
|
| 174 |
}
|
| 175 |
|
| 176 |
+
.gr-slider input[type="range"]::-webkit-slider-thumb {
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
background: var(--gradient-button) !important;
|
| 178 |
+
border: none !important;
|
| 179 |
+
border-radius: 50% !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
}
|
| 181 |
|
| 182 |
+
.gr-radio input[type="radio"], .gr-checkbox input[type="checkbox"] {
|
| 183 |
+
accent-color: var(--ai-cyan) !important;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
}
|
| 185 |
|
| 186 |
+
/* Footer hiding */
|
| 187 |
+
footer {
|
| 188 |
+
visibility: hidden !important;
|
| 189 |
}
|
| 190 |
+
"""
|
| 191 |
|
| 192 |
+
# Global variables to store models
|
| 193 |
+
tokenizer = None
|
| 194 |
+
ner_pipeline = None
|
| 195 |
+
pos_pipeline = None
|
| 196 |
+
intent_classifier = None
|
| 197 |
+
semantic_model = None
|
| 198 |
+
stt_model = None # Speech-to-text model
|
| 199 |
+
models_loaded = False
|
| 200 |
|
| 201 |
+
# Database to store keyword ranking history (in-memory database for this example)
|
| 202 |
+
# In a real app, you would use a proper database
|
| 203 |
+
ranking_history = {}
|
|
|
|
|
|
|
| 204 |
|
| 205 |
+
def load_models(progress=gr.Progress()):
|
| 206 |
+
"""Lazy-load models only when needed"""
|
| 207 |
+
global tokenizer, ner_pipeline, pos_pipeline, intent_classifier, semantic_model, stt_model, models_loaded
|
| 208 |
+
|
| 209 |
+
if models_loaded:
|
| 210 |
+
return True
|
| 211 |
+
|
| 212 |
+
try:
|
| 213 |
+
progress(0.1, desc="Loading models...")
|
| 214 |
+
|
| 215 |
+
# Use smaller models and load them sequentially to reduce memory pressure
|
| 216 |
+
from transformers import AutoTokenizer, pipeline
|
| 217 |
+
|
| 218 |
+
progress(0.2, desc="Loading tokenizer...")
|
| 219 |
+
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 220 |
+
|
| 221 |
+
progress(0.3, desc="Loading NER model...")
|
| 222 |
+
ner_pipeline = pipeline("ner", model="dslim/bert-base-NER")
|
| 223 |
+
|
| 224 |
+
progress(0.4, desc="Loading POS model...")
|
| 225 |
+
# Use smaller POS model
|
| 226 |
+
from transformers import AutoModelForTokenClassification, BertTokenizerFast
|
| 227 |
+
pos_model = AutoModelForTokenClassification.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
|
| 228 |
+
pos_tokenizer = BertTokenizerFast.from_pretrained("vblagoje/bert-english-uncased-finetuned-pos")
|
| 229 |
+
pos_pipeline = pipeline("token-classification", model=pos_model, tokenizer=pos_tokenizer)
|
| 230 |
+
|
| 231 |
+
progress(0.6, desc="Loading intent classifier...")
|
| 232 |
+
# Use a smaller model for zero-shot classification
|
| 233 |
+
intent_classifier = pipeline(
|
| 234 |
+
"zero-shot-classification",
|
| 235 |
+
model="typeform/distilbert-base-uncased-mnli", # Smaller than BART
|
| 236 |
+
device=0 if torch.cuda.is_available() else -1 # Use GPU if available
|
| 237 |
+
)
|
| 238 |
+
|
| 239 |
+
progress(0.7, desc="Loading speech-to-text model...")
|
| 240 |
+
try:
|
| 241 |
+
# Load automatic speech recognition model
|
| 242 |
+
from transformers import WhisperProcessor, WhisperForConditionalGeneration
|
| 243 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-small.en")
|
| 244 |
+
stt_model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-small.en")
|
| 245 |
+
stt_model = (processor, stt_model)
|
| 246 |
+
except Exception as e:
|
| 247 |
+
print(f"Warning: Could not load speech-to-text model: {str(e)}")
|
| 248 |
+
stt_model = None # Set to None so we can check if it's available
|
| 249 |
+
|
| 250 |
+
progress(0.8, desc="Loading semantic model...")
|
| 251 |
+
try:
|
| 252 |
+
from sentence_transformers import SentenceTransformer
|
| 253 |
+
semantic_model = SentenceTransformer('all-MiniLM-L6-v2')
|
| 254 |
+
except Exception as e:
|
| 255 |
+
print(f"Warning: Could not load semantic model: {str(e)}")
|
| 256 |
+
semantic_model = None # Set to None so we can check if it's available
|
| 257 |
+
|
| 258 |
+
progress(1.0, desc="Models loaded successfully!")
|
| 259 |
+
models_loaded = True
|
| 260 |
+
return True
|
| 261 |
+
|
| 262 |
+
except Exception as e:
|
| 263 |
+
print(f"Error loading models: {str(e)}")
|
| 264 |
+
return f"Error: {str(e)}"
|
| 265 |
|
| 266 |
+
def speech_to_text(audio_path):
|
| 267 |
+
"""Convert speech to text using the loaded speech-to-text model"""
|
| 268 |
+
if stt_model is None:
|
| 269 |
+
return "Speech-to-text model not loaded. Please try text input instead."
|
| 270 |
+
|
| 271 |
+
try:
|
| 272 |
+
import librosa
|
| 273 |
+
import numpy as np
|
| 274 |
+
|
| 275 |
+
# Load audio file
|
| 276 |
+
audio, sr = librosa.load(audio_path, sr=16000)
|
| 277 |
+
|
| 278 |
+
# Process audio with Whisper
|
| 279 |
+
processor, model = stt_model
|
| 280 |
+
input_features = processor(audio, sampling_rate=16000, return_tensors="pt").input_features
|
| 281 |
+
|
| 282 |
+
# Generate token ids
|
| 283 |
+
predicted_ids = model.generate(input_features)
|
| 284 |
+
|
| 285 |
+
# Decode token ids to text
|
| 286 |
+
transcription = processor.batch_decode(predicted_ids, skip_special_tokens=True)[0]
|
| 287 |
+
|
| 288 |
+
return transcription
|
| 289 |
+
except Exception as e:
|
| 290 |
+
print(f"Error in speech_to_text: {str(e)}")
|
| 291 |
+
return f"Error processing speech: {str(e)}"
|
| 292 |
|
| 293 |
+
def handle_voice_input(audio):
|
| 294 |
+
"""Handle voice input and convert to text"""
|
| 295 |
+
if audio is None:
|
| 296 |
+
return "No audio detected. Please try again."
|
| 297 |
+
|
| 298 |
+
try:
|
| 299 |
+
# Convert speech to text
|
| 300 |
+
text = speech_to_text(audio)
|
| 301 |
+
return text
|
| 302 |
+
except Exception as e:
|
| 303 |
+
print(f"Error in handle_voice_input: {str(e)}")
|
| 304 |
+
return f"Error: {str(e)}"
|
| 305 |
|
| 306 |
+
def simulate_google_serp(keyword, num_results=10):
|
| 307 |
+
"""Simulate Google SERP results for a keyword"""
|
| 308 |
+
try:
|
| 309 |
+
# In a real implementation, this would call the Google API
|
| 310 |
+
# For now, we'll generate fake SERP data
|
| 311 |
+
|
| 312 |
+
# Deterministic seed for consistent results by keyword
|
| 313 |
+
np.random.seed(sum(ord(c) for c in keyword))
|
| 314 |
+
|
| 315 |
+
serp_results = []
|
| 316 |
+
domains = [
|
| 317 |
+
"example.com", "wikipedia.org", "medium.com", "github.com",
|
| 318 |
+
"stackoverflow.com", "amazon.com", "youtube.com", "reddit.com",
|
| 319 |
+
"linkedin.com", "twitter.com", "facebook.com", "instagram.com"
|
| 320 |
+
]
|
| 321 |
+
|
| 322 |
+
for i in range(1, num_results + 1):
|
| 323 |
+
domain = domains[i % len(domains)]
|
| 324 |
+
title = f"{keyword.title()} - {domain.split('.')[0].title()} Resource #{i}"
|
| 325 |
+
snippet = f"This is a simulated SERP result for '{keyword}'. Result #{i} would provide relevant information about this topic."
|
| 326 |
+
url = f"https://www.{domain}/{keyword.replace(' ', '-')}-resource-{i}"
|
| 327 |
+
|
| 328 |
+
position = i
|
| 329 |
+
ctr = round(0.3 * (0.85 ** (i - 1)), 4) # Simulate click-through rate decay
|
| 330 |
+
|
| 331 |
+
serp_results.append({
|
| 332 |
+
"position": position,
|
| 333 |
+
"title": title,
|
| 334 |
+
"url": url,
|
| 335 |
+
"domain": domain,
|
| 336 |
+
"snippet": snippet,
|
| 337 |
+
"ctr_estimate": ctr,
|
| 338 |
+
"impressions_estimate": np.random.randint(1000, 10000)
|
| 339 |
+
})
|
| 340 |
+
|
| 341 |
+
return serp_results
|
| 342 |
+
except Exception as e:
|
| 343 |
+
print(f"Error in simulate_google_serp: {str(e)}")
|
| 344 |
+
return []
|
| 345 |
|
| 346 |
+
def update_ranking_history(keyword, serp_results):
|
| 347 |
+
"""Update the ranking history for a keyword"""
|
| 348 |
+
try:
|
| 349 |
+
# Get current timestamp
|
| 350 |
+
timestamp = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 351 |
+
|
| 352 |
+
# Initialize if keyword not in history
|
| 353 |
+
if keyword not in ranking_history:
|
| 354 |
+
ranking_history[keyword] = []
|
| 355 |
+
|
| 356 |
+
# Add new entry
|
| 357 |
+
ranking_history[keyword].append({
|
| 358 |
+
"timestamp": timestamp,
|
| 359 |
+
"results": serp_results[:5] # Store top 5 results for history
|
| 360 |
+
})
|
| 361 |
+
|
| 362 |
+
# Keep only last 10 entries for each keyword
|
| 363 |
+
if len(ranking_history[keyword]) > 10:
|
| 364 |
+
ranking_history[keyword] = ranking_history[keyword][-10:]
|
| 365 |
+
|
| 366 |
+
return True
|
| 367 |
+
except Exception as e:
|
| 368 |
+
print(f"Error in update_ranking_history: {str(e)}")
|
| 369 |
+
return False
|
| 370 |
|
| 371 |
+
def get_semantic_similarity(token, comparison_terms):
|
| 372 |
+
"""Calculate semantic similarity between a token and comparison terms"""
|
| 373 |
+
try:
|
| 374 |
+
from sklearn.metrics.pairwise import cosine_similarity
|
| 375 |
+
|
| 376 |
+
token_embedding = semantic_model.encode([token])[0]
|
| 377 |
+
comparison_embeddings = semantic_model.encode(comparison_terms)
|
| 378 |
+
|
| 379 |
+
similarities = []
|
| 380 |
+
for i, emb in enumerate(comparison_embeddings):
|
| 381 |
+
similarity = cosine_similarity([token_embedding], [emb])[0][0]
|
| 382 |
+
similarities.append((comparison_terms[i], float(similarity)))
|
| 383 |
+
|
| 384 |
+
return sorted(similarities, key=lambda x: x[1], reverse=True)
|
| 385 |
+
except Exception as e:
|
| 386 |
+
print(f"Error in semantic similarity: {str(e)}")
|
| 387 |
+
# Return dummy data on error
|
| 388 |
+
return [(term, 0.5) for term in comparison_terms]
|
| 389 |
|
| 390 |
+
def get_token_colors(token_type):
|
| 391 |
+
colors = {
|
| 392 |
+
"prefix": "#D8BFD8", # Light purple
|
| 393 |
+
"suffix": "#AEDAA4", # Light green
|
| 394 |
+
"stem": "#A4C2F4", # Light blue
|
| 395 |
+
"compound_first": "#FFCC80", # Light orange
|
| 396 |
+
"compound_second": "#FFCC80", # Light orange
|
| 397 |
+
"word": "#E5E5E5" # Light gray
|
| 398 |
+
}
|
| 399 |
+
return colors.get(token_type, "#E5E5E5")
|
| 400 |
|
| 401 |
+
def simulate_historical_data(token):
|
| 402 |
+
"""Generate simulated historical usage data for a token"""
|
| 403 |
+
eras = ["1900s", "1950s", "1980s", "2000s", "2010s", "Present"]
|
| 404 |
+
|
| 405 |
+
# Different patterns based on token characteristics
|
| 406 |
+
if len(token) > 8:
|
| 407 |
+
# Possibly a technical term - recent growth
|
| 408 |
+
values = [10, 20, 30, 60, 85, 95]
|
| 409 |
+
elif token.startswith(("un", "re", "de", "pre")):
|
| 410 |
+
# Prefix words tend to be older
|
| 411 |
+
values = [45, 50, 60, 70, 75, 80]
|
| 412 |
+
else:
|
| 413 |
+
# Standard pattern for common words
|
| 414 |
+
# Use token hash value modulo instead of hash() directly to avoid different results across runs
|
| 415 |
+
base = 50 + (sum(ord(c) for c in token) % 30)
|
| 416 |
+
# Use a fixed seed for reproducibility
|
| 417 |
+
np.random.seed(sum(ord(c) for c in token))
|
| 418 |
+
noise = np.random.normal(0, 5, 6)
|
| 419 |
+
values = [max(5, min(95, base + i*5 + n)) for i, n in enumerate(noise)]
|
| 420 |
+
|
| 421 |
+
return list(zip(eras, values))
|
| 422 |
|
| 423 |
+
def generate_origin_data(token):
|
| 424 |
+
"""Generate simulated origin/etymology data for a token"""
|
| 425 |
+
origins = [
|
| 426 |
+
{"era": "Ancient", "language": "Latin"},
|
| 427 |
+
{"era": "Ancient", "language": "Greek"},
|
| 428 |
+
{"era": "Medieval", "language": "Old English"},
|
| 429 |
+
{"era": "16th century", "language": "French"},
|
| 430 |
+
{"era": "18th century", "language": "Germanic"},
|
| 431 |
+
{"era": "19th century", "language": "Anglo-Saxon"},
|
| 432 |
+
{"era": "20th century", "language": "Modern English"}
|
| 433 |
+
]
|
| 434 |
+
|
| 435 |
+
# Deterministic selection based on the token
|
| 436 |
+
index = sum(ord(c) for c in token) % len(origins)
|
| 437 |
+
origin = origins[index]
|
| 438 |
+
|
| 439 |
+
note = f"First appeared in {origin['era']} texts derived from {origin['language']}."
|
| 440 |
+
origin["note"] = note
|
| 441 |
+
|
| 442 |
+
return origin
|
| 443 |
|
| 444 |
+
def analyze_token_types(tokens):
|
| 445 |
+
"""Identify token types (prefix, suffix, compound, etc.)"""
|
| 446 |
+
processed_tokens = []
|
| 447 |
+
|
| 448 |
+
prefixes = ["un", "re", "de", "pre", "post", "anti", "pro", "inter", "sub", "super"]
|
| 449 |
+
suffixes = ["ing", "ed", "ly", "ment", "tion", "able", "ible", "ness", "ful", "less"]
|
| 450 |
+
|
| 451 |
+
for token in tokens:
|
| 452 |
+
token_text = token.lower()
|
| 453 |
+
token_type = "word"
|
| 454 |
+
|
| 455 |
+
# Check for prefixes
|
| 456 |
+
for prefix in prefixes:
|
| 457 |
+
if token_text.startswith(prefix) and len(token_text) > len(prefix) + 2:
|
| 458 |
+
if token_text != prefix: # Make sure the word isn't just the prefix
|
| 459 |
+
token_type = "prefix"
|
| 460 |
+
break
|
| 461 |
+
|
| 462 |
+
# Check for suffixes
|
| 463 |
+
if token_type == "word":
|
| 464 |
+
for suffix in suffixes:
|
| 465 |
+
if token_text.endswith(suffix) and len(token_text) > len(suffix) + 2:
|
| 466 |
+
token_type = "suffix"
|
| 467 |
+
break
|
| 468 |
+
|
| 469 |
+
# Check for compound words (simplified)
|
| 470 |
+
if token_type == "word" and len(token_text) > 8:
|
| 471 |
+
token_type = "compound_first" # Simplified - in reality would need more analysis
|
| 472 |
+
|
| 473 |
+
processed_tokens.append({
|
| 474 |
+
"text": token_text,
|
| 475 |
+
"type": token_type
|
| 476 |
+
})
|
| 477 |
+
|
| 478 |
+
return processed_tokens
|
| 479 |
|
| 480 |
+
def plot_historical_data(historical_data):
|
| 481 |
+
"""Create a plot of historical usage data, with error handling"""
|
| 482 |
+
try:
|
| 483 |
+
eras = [item[0] for item in historical_data]
|
| 484 |
+
values = [item[1] for item in historical_data]
|
| 485 |
+
|
| 486 |
+
plt.figure(figsize=(8, 3))
|
| 487 |
+
plt.bar(eras, values, color='skyblue')
|
| 488 |
+
plt.title('Historical Usage')
|
| 489 |
+
plt.xlabel('Era')
|
| 490 |
+
plt.ylabel('Usage Level')
|
| 491 |
+
plt.ylim(0, 100)
|
| 492 |
+
plt.xticks(rotation=45)
|
| 493 |
+
plt.tight_layout()
|
| 494 |
+
|
| 495 |
+
return plt
|
| 496 |
+
except Exception as e:
|
| 497 |
+
print(f"Error in plot_historical_data: {str(e)}")
|
| 498 |
+
# Return a simple error plot
|
| 499 |
+
plt.figure(figsize=(8, 3))
|
| 500 |
+
plt.text(0.5, 0.5, f"Error creating plot: {str(e)}",
|
| 501 |
+
horizontalalignment='center', verticalalignment='center')
|
| 502 |
+
plt.axis('off')
|
| 503 |
+
return plt
|
| 504 |
|
| 505 |
+
def create_evolution_chart(data, forecast_months=6, growth_scenario="Moderate"):
|
| 506 |
+
"""Create a simpler chart that's more compatible with Gradio"""
|
| 507 |
+
try:
|
| 508 |
+
import plotly.graph_objects as go
|
| 509 |
+
|
| 510 |
+
# Create a basic figure without subplots
|
| 511 |
+
fig = go.Figure()
|
| 512 |
+
|
| 513 |
+
# Add main trace for search volume
|
| 514 |
+
fig.add_trace(
|
| 515 |
+
go.Scatter(
|
| 516 |
+
x=[item["month"] for item in data],
|
| 517 |
+
y=[item["searchVolume"] for item in data],
|
| 518 |
+
name="Search Volume",
|
| 519 |
+
line=dict(color="#8884d8", width=3),
|
| 520 |
+
mode="lines+markers"
|
| 521 |
+
)
|
| 522 |
+
)
|
| 523 |
+
|
| 524 |
+
# Scale the other metrics to be visible on the same chart
|
| 525 |
+
max_volume = max([item["searchVolume"] for item in data])
|
| 526 |
+
scale_factor = max_volume / 100
|
| 527 |
+
|
| 528 |
+
# Add competition score (scaled)
|
| 529 |
+
fig.add_trace(
|
| 530 |
+
go.Scatter(
|
| 531 |
+
x=[item["month"] for item in data],
|
| 532 |
+
y=[item["competitionScore"] * scale_factor for item in data],
|
| 533 |
+
name="Competition Score",
|
| 534 |
+
line=dict(color="#82ca9d", width=2, dash="dot"),
|
| 535 |
+
mode="lines+markers"
|
| 536 |
+
)
|
| 537 |
+
)
|
| 538 |
+
|
| 539 |
+
# Add intent clarity (scaled)
|
| 540 |
+
fig.add_trace(
|
| 541 |
+
go.Scatter(
|
| 542 |
+
x=[item["month"] for item in data],
|
| 543 |
+
y=[item["intentClarity"] * scale_factor for item in data],
|
| 544 |
+
name="Intent Clarity",
|
| 545 |
+
line=dict(color="#ffc658", width=2, dash="dash"),
|
| 546 |
+
mode="lines+markers"
|
| 547 |
+
)
|
| 548 |
+
)
|
| 549 |
+
|
| 550 |
+
# Simple layout
|
| 551 |
+
fig.update_layout(
|
| 552 |
+
title=f"Keyword Evolution Forecast ({growth_scenario} Growth)",
|
| 553 |
+
xaxis_title="Month",
|
| 554 |
+
yaxis_title="Value",
|
| 555 |
+
legend=dict(orientation="h", y=1.1),
|
| 556 |
+
height=500
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
return fig
|
| 560 |
+
|
| 561 |
+
except Exception as e:
|
| 562 |
+
print(f"Error in chart creation: {str(e)}")
|
| 563 |
+
# Fallback to an even simpler chart
|
| 564 |
+
fig = go.Figure(data=go.Scatter(x=[1, 2, 3], y=[4, 1, 2]))
|
| 565 |
+
fig.update_layout(title="Fallback Chart (Error occurred)")
|
| 566 |
+
return fig
|
| 567 |
|
| 568 |
+
def create_ranking_history_chart(keyword_history):
|
| 569 |
+
"""Create a chart showing keyword ranking history over time"""
|
| 570 |
+
try:
|
| 571 |
+
if not keyword_history or len(keyword_history) < 2:
|
| 572 |
+
# Not enough data for a meaningful chart
|
| 573 |
+
fig = go.Figure()
|
| 574 |
+
fig.update_layout(
|
| 575 |
+
title="Insufficient Ranking Data",
|
| 576 |
+
annotations=[{
|
| 577 |
+
"text": "Need at least 2 data points for ranking history",
|
| 578 |
+
"showarrow": False,
|
| 579 |
+
"font": {"size": 16},
|
| 580 |
+
"xref": "paper",
|
| 581 |
+
"yref": "paper",
|
| 582 |
+
"x": 0.5,
|
| 583 |
+
"y": 0.5
|
| 584 |
+
}]
|
| 585 |
+
)
|
| 586 |
+
return fig
|
| 587 |
+
|
| 588 |
+
# Create a figure
|
| 589 |
+
fig = go.Figure()
|
| 590 |
+
|
| 591 |
+
# Extract timestamps and convert to datetime objects
|
| 592 |
+
timestamps = [entry["timestamp"] for entry in keyword_history]
|
| 593 |
+
dates = [datetime.datetime.strptime(ts, "%Y-%m-%d %H:%M:%S") for ts in timestamps]
|
| 594 |
+
|
| 595 |
+
# Get unique domains from all results
|
| 596 |
+
all_domains = set()
|
| 597 |
+
for entry in keyword_history:
|
| 598 |
+
for result in entry["results"]:
|
| 599 |
+
all_domains.add(result["domain"])
|
| 600 |
+
|
| 601 |
+
# Colors for different domains
|
| 602 |
+
domain_colors = {}
|
| 603 |
+
color_palette = [
|
| 604 |
+
"#1f77b4", "#ff7f0e", "#2ca02c", "#d62728", "#9467bd",
|
| 605 |
+
"#8c564b", "#e377c2", "#7f7f7f", "#bcbd22", "#17becf"
|
| 606 |
+
]
|
| 607 |
+
for i, domain in enumerate(all_domains):
|
| 608 |
+
domain_colors[domain] = color_palette[i % len(color_palette)]
|
| 609 |
+
|
| 610 |
+
# Track domains and their positions over time
|
| 611 |
+
domain_tracking = {domain: {"x": [], "y": [], "text": []} for domain in all_domains}
|
| 612 |
+
|
| 613 |
+
for i, entry in enumerate(keyword_history):
|
| 614 |
+
for result in entry["results"]:
|
| 615 |
+
domain = result["domain"]
|
| 616 |
+
position = result["position"]
|
| 617 |
+
title = result["title"]
|
| 618 |
+
|
| 619 |
+
domain_tracking[domain]["x"].append(dates[i])
|
| 620 |
+
domain_tracking[domain]["y"].append(position)
|
| 621 |
+
domain_tracking[domain]["text"].append(title)
|
| 622 |
+
|
| 623 |
+
# Add traces for each domain
|
| 624 |
+
for domain, data in domain_tracking.items():
|
| 625 |
+
if len(data["x"]) > 0: # Only add domains that have data
|
| 626 |
+
fig.add_trace(
|
| 627 |
+
go.Scatter(
|
| 628 |
+
x=data["x"],
|
| 629 |
+
y=data["y"],
|
| 630 |
+
mode="lines+markers",
|
| 631 |
+
name=domain,
|
| 632 |
+
line=dict(color=domain_colors[domain]),
|
| 633 |
+
hovertemplate="%{text}<br>Position: %{y}<br>Date: %{x}<extra></extra>",
|
| 634 |
+
text=data["text"],
|
| 635 |
+
marker=dict(size=8)
|
| 636 |
+
)
|
| 637 |
+
)
|
| 638 |
+
|
| 639 |
+
# Update layout
|
| 640 |
+
fig.update_layout(
|
| 641 |
+
title="Keyword Ranking History",
|
| 642 |
+
xaxis_title="Date",
|
| 643 |
+
yaxis_title="Position",
|
| 644 |
+
yaxis=dict(autorange="reversed"), # Invert y-axis so position 1 is on top
|
| 645 |
+
hovermode="closest",
|
| 646 |
+
height=500
|
| 647 |
+
)
|
| 648 |
+
|
| 649 |
+
return fig
|
| 650 |
+
|
| 651 |
+
except Exception as e:
|
| 652 |
+
print(f"Error in create_ranking_history_chart: {str(e)}")
|
| 653 |
+
# Return fallback chart
|
| 654 |
+
fig = go.Figure()
|
| 655 |
+
fig.update_layout(
|
| 656 |
+
title="Error Creating Ranking Chart",
|
| 657 |
+
annotations=[{
|
| 658 |
+
"text": f"Error: {str(e)}",
|
| 659 |
+
"showarrow": False,
|
| 660 |
+
"font": {"size": 14},
|
| 661 |
+
"xref": "paper",
|
| 662 |
+
"yref": "paper",
|
| 663 |
+
"x": 0.5,
|
| 664 |
+
"y": 0.5
|
| 665 |
+
}]
|
| 666 |
+
)
|
| 667 |
+
return fig
|
| 668 |
|
| 669 |
+
def generate_serp_html(keyword, serp_results):
|
| 670 |
+
"""Generate HTML for SERP results"""
|
| 671 |
+
if not serp_results:
|
| 672 |
+
return "<div>No SERP results available</div>"
|
|
|
|
| 673 |
|
| 674 |
+
html = f"""
|
| 675 |
+
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
|
| 676 |
+
<h2 style="margin-top: 0;">SERP Results for "{keyword}"</h2>
|
| 677 |
+
|
| 678 |
+
<div style="background-color: #f5f5f5; padding: 10px; border-radius: 4px; margin-bottom: 20px;">
|
| 679 |
+
<div style="color: #666; font-size: 12px;">This is a simulated SERP. In a real application, this would use the Google API.</div>
|
| 680 |
+
</div>
|
| 681 |
+
|
| 682 |
+
<div class="serp-results" style="display: flex; flex-direction: column; gap: 16px;">
|
| 683 |
+
"""
|
| 684 |
|
| 685 |
+
for result in serp_results:
|
| 686 |
+
position = result["position"]
|
| 687 |
+
title = result["title"]
|
| 688 |
+
url = result["url"]
|
| 689 |
+
snippet = result["snippet"]
|
| 690 |
+
domain = result["domain"]
|
| 691 |
+
ctr = result["ctr_estimate"]
|
| 692 |
+
impressions = result["impressions_estimate"]
|
| 693 |
+
|
| 694 |
+
html += f"""
|
| 695 |
+
<div class="serp-result" style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; position: relative;">
|
| 696 |
+
<div style="position: absolute; top: -10px; left: -10px; background-color: #4299e1; color: white; width: 24px; height: 24px; border-radius: 50%; display: flex; align-items: center; justify-content: center; font-size: 12px;">
|
| 697 |
+
{position}
|
| 698 |
+
</div>
|
| 699 |
+
<div style="margin-bottom: 5px;">
|
| 700 |
+
<a href="#" style="font-size: 18px; color: #1a73e8; text-decoration: none; font-weight: 500;">{title}</a>
|
| 701 |
+
</div>
|
| 702 |
+
<div style="margin-bottom: 8px; color: #006621; font-size: 14px;">{url}</div>
|
| 703 |
+
<div style="color: #4d5156; font-size: 14px;">{snippet}</div>
|
| 704 |
+
|
| 705 |
+
<div style="display: flex; margin-top: 10px; font-size: 12px; color: #666;">
|
| 706 |
+
<div style="margin-right: 15px;"><span style="font-weight: 500;">CTR:</span> {ctr:.2%}</div>
|
| 707 |
+
<div><span style="font-weight: 500;">Est. Impressions:</span> {impressions:,}</div>
|
| 708 |
+
</div>
|
| 709 |
+
</div>
|
| 710 |
+
"""
|
| 711 |
+
|
| 712 |
+
html += """
|
| 713 |
+
</div>
|
| 714 |
+
</div>
|
| 715 |
+
"""
|
| 716 |
+
|
| 717 |
+
return html
|
| 718 |
|
| 719 |
+
def generate_token_visualization_html(token_analysis, full_analysis):
|
| 720 |
+
"""Generate HTML for token visualization"""
|
| 721 |
+
html = """
|
| 722 |
+
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
|
| 723 |
+
<h2 style="margin-top: 0;">Token Visualization</h2>
|
| 724 |
+
|
| 725 |
+
<div style="margin-bottom: 20px; padding: 15px; background-color: #f8f9fa; border-radius: 6px;">
|
| 726 |
+
<div style="margin-bottom: 8px; font-weight: bold; color: #4a5568;">Human View:</div>
|
| 727 |
+
<div style="display: flex; flex-wrap: wrap; gap: 8px;">
|
| 728 |
+
"""
|
| 729 |
+
|
| 730 |
+
# Add human view tokens
|
| 731 |
+
for token in token_analysis:
|
| 732 |
+
html += f"""
|
| 733 |
+
<div style="padding: 6px 12px; background-color: white; border: 1px solid #cbd5e0; border-radius: 4px;">
|
| 734 |
+
{token['text']}
|
| 735 |
+
</div>
|
| 736 |
+
"""
|
| 737 |
+
|
| 738 |
+
html += """
|
| 739 |
+
</div>
|
| 740 |
+
</div>
|
| 741 |
+
|
| 742 |
+
<div style="text-align: center; margin: 15px 0;">
|
| 743 |
+
<span style="font-size: 20px;">β</span>
|
| 744 |
+
</div>
|
| 745 |
+
|
| 746 |
+
<div style="padding: 15px; background-color: #f0fff4; border-radius: 6px;">
|
| 747 |
+
<div style="margin-bottom: 8px; font-weight: bold; color: #2f855a;">Machine View:</div>
|
| 748 |
+
<div style="display: flex; flex-wrap: wrap; gap: 8px;">
|
| 749 |
+
"""
|
| 750 |
+
|
| 751 |
+
# Add machine view tokens
|
| 752 |
+
for token in full_analysis:
|
| 753 |
+
bg_color = get_token_colors(token["type"])
|
| 754 |
+
html += f"""
|
| 755 |
+
<div style="padding: 6px 12px; background-color: {bg_color}; border: 1px solid #a0aec0; border-radius: 4px; font-family: monospace;">
|
| 756 |
+
{token['token']}
|
| 757 |
+
<span style="font-size: 10px; opacity: 0.7; display: block;">{token['type']}</span>
|
| 758 |
+
</div>
|
| 759 |
+
"""
|
| 760 |
+
|
| 761 |
+
html += """
|
| 762 |
+
</div>
|
| 763 |
+
</div>
|
| 764 |
+
|
| 765 |
+
<div style="margin-top: 20px; display: grid; grid-template-columns: repeat(3, 1fr); gap: 10px; text-align: center;">
|
| 766 |
+
"""
|
| 767 |
+
|
| 768 |
+
# Add stats
|
| 769 |
+
word_count = len(token_analysis)
|
| 770 |
+
token_count = len(full_analysis)
|
| 771 |
+
ratio = round(token_count / max(1, word_count), 2)
|
| 772 |
+
|
| 773 |
+
html += f"""
|
| 774 |
+
<div style="background-color: #ebf8ff; padding: 10px; border-radius: 6px;">
|
| 775 |
+
<div style="font-size: 24px; font-weight: bold; color: #3182ce;">{word_count}</div>
|
| 776 |
+
<div style="font-size: 14px; color: #4299e1;">Words</div>
|
| 777 |
+
</div>
|
| 778 |
+
|
| 779 |
+
<div style="background-color: #f0fff4; padding: 10px; border-radius: 6px;">
|
| 780 |
+
<div style="font-size: 24px; font-weight: bold; color: #38a169;">{token_count}</div>
|
| 781 |
+
<div style="font-size: 14px; color: #48bb78;">Tokens</div>
|
| 782 |
+
</div>
|
| 783 |
+
|
| 784 |
+
<div style="background-color: #faf5ff; padding: 10px; border-radius: 6px;">
|
| 785 |
+
<div style="font-size: 24px; font-weight: bold; color: #805ad5;">{ratio}</div>
|
| 786 |
+
<div style="font-size: 14px; color: #9f7aea;">Tokens per Word</div>
|
| 787 |
+
</div>
|
| 788 |
+
"""
|
| 789 |
+
|
| 790 |
+
html += """
|
| 791 |
+
</div>
|
| 792 |
+
</div>
|
| 793 |
+
"""
|
| 794 |
+
|
| 795 |
+
return html
|
| 796 |
|
| 797 |
+
def generate_full_analysis_html(keyword, token_analysis, intent_analysis, evolution_potential, trends):
|
| 798 |
+
"""Generate HTML for full keyword analysis"""
|
| 799 |
+
html = f"""
|
| 800 |
+
<div style="font-family: Arial, sans-serif; padding: 20px; border: 1px solid #ddd; border-radius: 8px;">
|
| 801 |
+
<h2 style="margin-top: 0;">Keyword DNA Analysis for: {keyword}</h2>
|
| 802 |
+
|
| 803 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr; gap: 15px; margin-bottom: 20px;">
|
| 804 |
+
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
|
| 805 |
+
<h3 style="margin-top: 0; font-size: 16px;">Intent Gene</h3>
|
| 806 |
+
<div style="display: flex; justify-content: space-between; margin-bottom: 10px;">
|
| 807 |
+
<span>Type:</span>
|
| 808 |
+
<span>{intent_analysis['type']}</span>
|
| 809 |
+
</div>
|
| 810 |
+
<div style="display: flex; justify-content: space-between; align-items: center;">
|
| 811 |
+
<span>Strength:</span>
|
| 812 |
+
<div style="width: 120px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
|
| 813 |
+
<div style="height: 100%; background-color: #48bb78; width: {intent_analysis['strength']}%;"></div>
|
| 814 |
+
</div>
|
| 815 |
+
</div>
|
| 816 |
+
</div>
|
| 817 |
+
|
| 818 |
+
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px;">
|
| 819 |
+
<h3 style="margin-top: 0; font-size: 16px;">Evolution Potential</h3>
|
| 820 |
+
<div style="display: flex; justify-content: center; align-items: center; height: 100px;">
|
| 821 |
+
<div style="position: relative; width: 100px; height: 100px;">
|
| 822 |
+
<div style="position: absolute; inset: 0; display: flex; align-items: center; justify-content: center;">
|
| 823 |
+
<span style="font-size: 24px; font-weight: bold;">{evolution_potential}</span>
|
| 824 |
+
</div>
|
| 825 |
+
<svg width="100" height="100" viewBox="0 0 36 36">
|
| 826 |
+
<path
|
| 827 |
+
d="M18 2.0845 a 15.9155 15.9155 0 0 1 0 31.831 a 15.9155 15.9155 0 0 1 0 -31.831"
|
| 828 |
+
fill="none"
|
| 829 |
+
stroke="#4CAF50"
|
| 830 |
+
stroke-width="3"
|
| 831 |
+
stroke-dasharray="{evolution_potential}, 100"
|
| 832 |
+
/>
|
| 833 |
+
</svg>
|
| 834 |
+
</div>
|
| 835 |
+
</div>
|
| 836 |
+
</div>
|
| 837 |
+
</div>
|
| 838 |
+
|
| 839 |
+
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 20px;">
|
| 840 |
+
<h3 style="margin-top: 0; font-size: 16px;">Future Mutations</h3>
|
| 841 |
+
<div style="display: flex; flex-direction: column; gap: 8px;">
|
| 842 |
+
"""
|
| 843 |
+
|
| 844 |
+
# Add trends
|
| 845 |
+
for trend in trends:
|
| 846 |
+
html += f"""
|
| 847 |
+
<div style="display: flex; align-items: center; gap: 8px;">
|
| 848 |
+
<span style="color: #48bb78;">β</span>
|
| 849 |
+
<span>{trend}</span>
|
| 850 |
+
</div>
|
| 851 |
+
"""
|
| 852 |
+
|
| 853 |
+
html += """
|
| 854 |
+
</div>
|
| 855 |
+
</div>
|
| 856 |
+
|
| 857 |
+
<h3 style="margin-bottom: 10px;">Token Details & Historical Analysis</h3>
|
| 858 |
+
"""
|
| 859 |
+
|
| 860 |
+
# Add token details
|
| 861 |
+
for token in token_analysis:
|
| 862 |
+
html += f"""
|
| 863 |
+
<div style="padding: 15px; border: 1px solid #e2e8f0; border-radius: 6px; margin-bottom: 15px;">
|
| 864 |
+
<div style="display: flex; justify-content: space-between; align-items: center; margin-bottom: 10px;">
|
| 865 |
+
<div style="display: flex; align-items: center; gap: 8px;">
|
| 866 |
+
<span style="font-size: 18px; font-weight: medium;">{token['token']}</span>
|
| 867 |
+
<span style="padding: 2px 8px; background-color: #edf2f7; border-radius: 4px; font-size: 12px;">{token['posTag']}</span>
|
| 868 |
+
"""
|
| 869 |
+
|
| 870 |
+
if token['entityType']:
|
| 871 |
+
html += f"""
|
| 872 |
+
<span style="padding: 2px 8px; background-color: #ebf8ff; color: #3182ce; border-radius: 4px; font-size: 12px; display: flex; align-items: center;">
|
| 873 |
+
β {token['entityType']}
|
| 874 |
+
</span>
|
| 875 |
+
"""
|
| 876 |
+
|
| 877 |
+
html += f"""
|
| 878 |
+
</div>
|
| 879 |
+
<div style="display: flex; align-items: center; gap: 4px;">
|
| 880 |
+
<span style="font-size: 12px; color: #718096;">Importance:</span>
|
| 881 |
+
<div style="width: 64px; height: 8px; background-color: #edf2f7; border-radius: 4px; overflow: hidden;">
|
| 882 |
+
<div style="height: 100%; background-color: #4299e1; width: {token['importance']}%;"></div>
|
| 883 |
+
</div>
|
| 884 |
+
</div>
|
| 885 |
+
</div>
|
| 886 |
+
|
| 887 |
+
<div style="margin-top: 15px;">
|
| 888 |
+
<div style="font-size: 12px; color: #718096; margin-bottom: 4px;">Historical Relevance:</div>
|
| 889 |
+
<div style="border: 1px solid #e2e8f0; border-radius: 4px; padding: 10px; background-color: #f7fafc;">
|
| 890 |
+
<div style="font-size: 12px; margin-bottom: 8px;">
|
| 891 |
+
<span style="font-weight: 500;">Origin: </span>
|
| 892 |
+
<span>{token['origin']['era']}, </span>
|
| 893 |
+
<span style="font-style: italic;">{token['origin']['language']}</span>
|
| 894 |
+
</div>
|
| 895 |
+
<div style="font-size: 12px; margin-bottom: 12px;">{token['origin']['note']}</div>
|
| 896 |
+
|
| 897 |
+
<div style="display: flex; align-items: flex-end; height: 50px; gap: 4px; margin-top: 8px;">
|
| 898 |
+
"""
|
| 899 |
+
|
| 900 |
+
# Add historical data bars
|
| 901 |
+
for period, value in token['historicalData']:
|
| 902 |
+
opacity = 0.3 + (token['historicalData'].index((period, value)) * 0.1)
|
| 903 |
+
html += f"""
|
| 904 |
+
<div style="display: flex; flex-direction: column; align-items: center; flex: 1;">
|
| 905 |
+
<div style="width: 100%; background-color: rgba(66, 153, 225, {opacity}); border-radius: 2px 2px 0 0; height: {max(4, value)}%;"></div>
|
| 906 |
+
<div style="font-size: 9px; margin-top: 4px; color: #718096; transform: rotate(45deg); transform-origin: top left; white-space: nowrap;">
|
| 907 |
+
{period}
|
| 908 |
+
</div>
|
| 909 |
+
</div>
|
| 910 |
+
"""
|
| 911 |
+
|
| 912 |
+
html += """
|
| 913 |
+
</div>
|
| 914 |
+
</div>
|
| 915 |
+
</div>
|
| 916 |
+
</div>
|
| 917 |
+
"""
|
| 918 |
+
|
| 919 |
+
html += """
|
| 920 |
+
</div>
|
| 921 |
+
"""
|
| 922 |
+
|
| 923 |
+
return html
|
| 924 |
|
| 925 |
+
def analyze_keyword(keyword, forecast_months=6, growth_scenario="Moderate", get_serp=False, progress=gr.Progress()):
|
| 926 |
+
"""Main function to analyze a keyword"""
|
| 927 |
+
if not keyword or not keyword.strip():
|
| 928 |
+
return (
|
| 929 |
+
"<div>Please enter a keyword to analyze</div>",
|
| 930 |
+
"<div>Please enter a keyword to analyze</div>",
|
| 931 |
+
None,
|
| 932 |
+
None,
|
| 933 |
+
None,
|
| 934 |
+
None,
|
| 935 |
+
None
|
| 936 |
+
)
|
| 937 |
+
|
| 938 |
+
progress(0.1, desc="Starting analysis...")
|
| 939 |
+
|
| 940 |
+
# Load models if not already loaded
|
| 941 |
+
model_status = load_models(progress)
|
| 942 |
+
if isinstance(model_status, str) and model_status.startswith("Error"):
|
| 943 |
+
return (
|
| 944 |
+
f"<div style='color:red;'>{model_status}</div>",
|
| 945 |
+
f"<div style='color:red;'>{model_status}</div>",
|
| 946 |
+
None,
|
| 947 |
+
None,
|
| 948 |
+
None,
|
| 949 |
+
None,
|
| 950 |
+
None
|
| 951 |
+
)
|
| 952 |
+
|
| 953 |
+
try:
|
| 954 |
+
# Basic tokenization - just split on spaces for simplicity
|
| 955 |
+
words = keyword.strip().lower().split()
|
| 956 |
+
progress(0.2, desc="Analyzing tokens...")
|
| 957 |
+
|
| 958 |
+
# Get token types
|
| 959 |
+
token_analysis = analyze_token_types(words)
|
| 960 |
+
|
| 961 |
+
progress(0.3, desc="Running NER...")
|
| 962 |
+
# Get NER tags - handle potential errors
|
| 963 |
+
try:
|
| 964 |
+
ner_results = ner_pipeline(keyword)
|
| 965 |
+
except Exception as e:
|
| 966 |
+
print(f"NER error: {str(e)}")
|
| 967 |
+
ner_results = []
|
| 968 |
+
|
| 969 |
+
progress(0.4, desc="Running POS tagging...")
|
| 970 |
+
# Get POS tags - handle potential errors
|
| 971 |
+
try:
|
| 972 |
+
pos_results = pos_pipeline(keyword)
|
| 973 |
+
except Exception as e:
|
| 974 |
+
print(f"POS error: {str(e)}")
|
| 975 |
+
pos_results = []
|
| 976 |
+
|
| 977 |
+
# Process and organize results
|
| 978 |
+
full_token_analysis = []
|
| 979 |
+
for token in token_analysis:
|
| 980 |
+
# Find POS tag for this token
|
| 981 |
+
pos_tag = "NOUN" # Default
|
| 982 |
+
for pos_result in pos_results:
|
| 983 |
+
if pos_result["word"].lower() == token["text"]:
|
| 984 |
+
pos_tag = pos_result["entity"]
|
| 985 |
+
break
|
| 986 |
+
|
| 987 |
+
# Find entity type if any
|
| 988 |
+
entity_type = None
|
| 989 |
+
for ner_result in ner_results:
|
| 990 |
+
if ner_result["word"].lower() == token["text"]:
|
| 991 |
+
entity_type = ner_result["entity"]
|
| 992 |
+
break
|
| 993 |
+
|
| 994 |
+
# Generate historical data
|
| 995 |
+
historical_data = simulate_historical_data(token["text"])
|
| 996 |
+
|
| 997 |
+
# Generate origin data
|
| 998 |
+
origin = generate_origin_data(token["text"])
|
| 999 |
+
|
| 1000 |
+
# Calculate importance (simplified algorithm)
|
| 1001 |
+
importance = 60 + (len(token["text"]) * 2)
|
| 1002 |
+
importance = min(95, importance)
|
| 1003 |
+
|
| 1004 |
+
# Generate more meaningful related terms using semantic similarity
|
| 1005 |
+
if semantic_model is not None:
|
| 1006 |
+
try:
|
| 1007 |
+
# Generate some potential related terms
|
| 1008 |
+
prefix_related = [f"about {token['text']}", f"what is {token['text']}", f"how to {token['text']}"]
|
| 1009 |
+
synonym_candidates = ["similar", "equivalent", "comparable", "like", "related", "alternative"]
|
| 1010 |
+
domain_terms = ["software", "marketing", "business", "science", "education", "technology"]
|
| 1011 |
+
comparison_terms = prefix_related + synonym_candidates + domain_terms
|
| 1012 |
+
|
| 1013 |
+
# Get similarities
|
| 1014 |
+
similarities = get_semantic_similarity(token['text'], comparison_terms)
|
| 1015 |
+
|
| 1016 |
+
# Use top 3 most similar terms
|
| 1017 |
+
related_terms = [term for term, score in similarities[:3]]
|
| 1018 |
+
except Exception as e:
|
| 1019 |
+
print(f"Error generating semantic related terms: {str(e)}")
|
| 1020 |
+
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
|
| 1021 |
+
else:
|
| 1022 |
+
# Fallback if semantic model isn't loaded
|
| 1023 |
+
related_terms = [f"{token['text']}-related-1", f"{token['text']}-related-2"]
|
| 1024 |
+
|
| 1025 |
+
full_token_analysis.append({
|
| 1026 |
+
"token": token["text"],
|
| 1027 |
+
"type": token["type"],
|
| 1028 |
+
"posTag": pos_tag,
|
| 1029 |
+
"entityType": entity_type,
|
| 1030 |
+
"importance": importance,
|
| 1031 |
+
"historicalData": historical_data,
|
| 1032 |
+
"origin": origin,
|
| 1033 |
+
"relatedTerms": related_terms
|
| 1034 |
+
})
|
| 1035 |
+
|
| 1036 |
+
progress(0.5, desc="Analyzing intent...")
|
| 1037 |
+
# Intent analysis - handle potential errors
|
| 1038 |
+
try:
|
| 1039 |
+
intent_result = intent_classifier(
|
| 1040 |
+
keyword,
|
| 1041 |
+
candidate_labels=["informational", "navigational", "transactional"]
|
| 1042 |
+
)
|
| 1043 |
+
|
| 1044 |
+
intent_analysis = {
|
| 1045 |
+
"type": intent_result["labels"][0].capitalize(),
|
| 1046 |
+
"strength": round(intent_result["scores"][0] * 100),
|
| 1047 |
+
"mutations": [
|
| 1048 |
+
f"{intent_result['labels'][0]}-variation-1",
|
| 1049 |
+
f"{intent_result['labels'][0]}-variation-2"
|
| 1050 |
+
]
|
| 1051 |
+
}
|
| 1052 |
+
except Exception as e:
|
| 1053 |
+
print(f"Intent classification error: {str(e)}")
|
| 1054 |
+
intent_analysis = {
|
| 1055 |
+
"type": "Informational", # Default fallback
|
| 1056 |
+
"strength": 70,
|
| 1057 |
+
"mutations": ["fallback-variation-1", "fallback-variation-2"]
|
| 1058 |
+
}
|
| 1059 |
+
|
| 1060 |
+
# Evolution potential (simplified calculation)
|
| 1061 |
+
evolution_potential = min(95, 65 + (len(keyword) % 30))
|
| 1062 |
+
|
| 1063 |
+
# Predicted trends (simplified)
|
| 1064 |
+
trends = [
|
| 1065 |
+
"Voice search adaptation",
|
| 1066 |
+
"Visual search integration"
|
| 1067 |
+
]
|
| 1068 |
+
|
| 1069 |
+
# Generate more realistic and keyword-specific evolution data
|
| 1070 |
+
base_volume = 1000 + (len(keyword) * 100)
|
| 1071 |
+
|
| 1072 |
+
# Adjust growth factor based on scenario
|
| 1073 |
+
if growth_scenario == "Conservative":
|
| 1074 |
+
growth_factor = 1.05 + (0.02 * (sum(ord(c) for c in keyword) % 5))
|
| 1075 |
+
elif growth_scenario == "Aggressive":
|
| 1076 |
+
growth_factor = 1.15 + (0.05 * (sum(ord(c) for c in keyword) % 5))
|
| 1077 |
+
else: # Moderate
|
| 1078 |
+
growth_factor = 1.1 + (0.03 * (sum(ord(c) for c in keyword) % 5))
|
| 1079 |
+
|
| 1080 |
+
evolution_data = []
|
| 1081 |
+
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"][:int(forecast_months)]
|
| 1082 |
+
current_volume = base_volume
|
| 1083 |
+
|
| 1084 |
+
for month in months:
|
| 1085 |
+
# Add some randomness to make it look more realistic
|
| 1086 |
+
np.random.seed(sum(ord(c) for c in month + keyword))
|
| 1087 |
+
random_factor = 0.9 + (0.2 * np.random.random())
|
| 1088 |
+
current_volume *= growth_factor * random_factor
|
| 1089 |
+
|
| 1090 |
+
evolution_data.append({
|
| 1091 |
+
"month": month,
|
| 1092 |
+
"searchVolume": int(current_volume),
|
| 1093 |
+
"competitionScore": min(95, 45 + (months.index(month) * 3) + (sum(ord(c) for c in keyword) % 10)),
|
| 1094 |
+
"intentClarity": min(95, 80 + (months.index(month) * 2) + (sum(ord(c) for c in keyword) % 5))
|
| 1095 |
+
})
|
| 1096 |
+
|
| 1097 |
+
progress(0.6, desc="Creating visualizations...")
|
| 1098 |
+
# Create interactive evolution chart
|
| 1099 |
+
evolution_chart = create_evolution_chart(evolution_data, forecast_months, growth_scenario)
|
| 1100 |
+
|
| 1101 |
+
# SERP results and ranking history (new feature)
|
| 1102 |
+
serp_results = None
|
| 1103 |
+
ranking_chart = None
|
| 1104 |
+
serp_html = None
|
| 1105 |
+
|
| 1106 |
+
if get_serp:
|
| 1107 |
+
progress(0.7, desc="Fetching SERP data...")
|
| 1108 |
+
# Get SERP results
|
| 1109 |
+
serp_results = simulate_google_serp(keyword)
|
| 1110 |
+
|
| 1111 |
+
# Update ranking history
|
| 1112 |
+
update_ranking_history(keyword, serp_results)
|
| 1113 |
+
|
| 1114 |
+
progress(0.8, desc="Creating ranking charts...")
|
| 1115 |
+
# Create ranking history chart
|
| 1116 |
+
if keyword in ranking_history and len(ranking_history[keyword]) > 0:
|
| 1117 |
+
ranking_chart = create_ranking_history_chart(ranking_history[keyword])
|
| 1118 |
+
|
| 1119 |
+
# Generate SERP HTML
|
| 1120 |
+
serp_html = generate_serp_html(keyword, serp_results)
|
| 1121 |
+
|
| 1122 |
+
# Generate HTML for token visualization
|
| 1123 |
+
token_viz_html = generate_token_visualization_html(token_analysis, full_token_analysis)
|
| 1124 |
+
|
| 1125 |
+
# Generate HTML for full analysis
|
| 1126 |
+
analysis_html = generate_full_analysis_html(
|
| 1127 |
+
keyword,
|
| 1128 |
+
full_token_analysis,
|
| 1129 |
+
intent_analysis,
|
| 1130 |
+
evolution_potential,
|
| 1131 |
+
trends
|
| 1132 |
+
)
|
| 1133 |
+
|
| 1134 |
+
# Generate JSON results
|
| 1135 |
+
json_results = {
|
| 1136 |
+
"keyword": keyword,
|
| 1137 |
+
"tokenAnalysis": full_token_analysis,
|
| 1138 |
+
"intentAnalysis": intent_analysis,
|
| 1139 |
+
"evolutionPotential": evolution_potential,
|
| 1140 |
+
"predictedTrends": trends,
|
| 1141 |
+
"forecast": {
|
| 1142 |
+
"months": forecast_months,
|
| 1143 |
+
"scenario": growth_scenario,
|
| 1144 |
+
"data": evolution_data
|
| 1145 |
+
},
|
| 1146 |
+
"serpResults": serp_results
|
| 1147 |
+
}
|
| 1148 |
+
|
| 1149 |
+
progress(1.0, desc="Analysis complete!")
|
| 1150 |
+
return token_viz_html, analysis_html, json_results, evolution_chart, serp_html, ranking_chart, keyword
|
| 1151 |
+
|
| 1152 |
+
except Exception as e:
|
| 1153 |
+
error_message = f"<div style='color:red;padding:20px;'>Error analyzing keyword: {str(e)}</div>"
|
| 1154 |
+
print(f"Error in analyze_keyword: {str(e)}")
|
| 1155 |
+
return error_message, error_message, None, None, None, None, None
|
| 1156 |
|
| 1157 |
+
# Create the Gradio interface with AI Snipper styling
|
| 1158 |
with gr.Blocks(
|
| 1159 |
css=ai_snipper_css,
|
| 1160 |
title="𧬠AI Snipper Keyword DNA Analyzer",
|
|
|
|
| 1168 |
|
| 1169 |
# Custom header with DNA theme
|
| 1170 |
gr.HTML("""
|
| 1171 |
+
<div style="text-align: center; padding: 2rem 0; margin-bottom: 2rem;">
|
| 1172 |
+
<h1 style="font-size: 3rem; font-weight: 800; margin-bottom: 1rem; background: linear-gradient(135deg, #06b6d4, #3b82f6, #8b5cf6); -webkit-background-clip: text; -webkit-text-fill-color: transparent; background-clip: text;">
|
| 1173 |
+
𧬠Keyword DNA Analyzer
|
| 1174 |
+
</h1>
|
| 1175 |
+
<p style="font-size: 1.2rem; color: #94a3b8; margin-top: 1rem; font-weight: 400;">
|
| 1176 |
Decode the genetic structure of your keywords with AI-powered analysis
|
| 1177 |
</p>
|
| 1178 |
</div>
|
|
|
|
| 1223 |
|
| 1224 |
# Status indicator with custom styling
|
| 1225 |
status_html = gr.HTML(
|
| 1226 |
+
'<div style="text-align: center; padding: 1rem; border-radius: 8px; margin: 1rem 0; font-weight: 500; background: rgba(6, 182, 212, 0.1); border: 1px solid #06b6d4; color: #06b6d4;">π Enter a keyword and click "Analyze DNA" to begin</div>'
|
| 1227 |
)
|
| 1228 |
|
| 1229 |
# Main analyze button
|
| 1230 |
analyze_btn = gr.Button(
|
| 1231 |
"𧬠Analyze DNA",
|
| 1232 |
+
variant="primary"
|
|
|
|
| 1233 |
)
|
| 1234 |
|
| 1235 |
# Example buttons with custom styling
|
| 1236 |
gr.Markdown("### π‘ Try These Examples")
|
| 1237 |
+
with gr.Row():
|
| 1238 |
example_btns = []
|
| 1239 |
examples = [
|
| 1240 |
"preprocessing",
|
|
|
|
| 1266 |
with gr.Tab("πΎ Raw Data"):
|
| 1267 |
json_output = gr.JSON()
|
| 1268 |
|
| 1269 |
+
# Event handlers
|
| 1270 |
voice_submit_btn.click(
|
| 1271 |
handle_voice_input,
|
| 1272 |
inputs=[audio_input],
|
|
|
|
| 1275 |
|
| 1276 |
# Updated status messages with custom styling
|
| 1277 |
analyze_btn.click(
|
| 1278 |
+
lambda: '<div style="text-align: center; padding: 1rem; border-radius: 8px; margin: 1rem 0; font-weight: 500; background: rgba(6, 182, 212, 0.1); border: 1px solid #06b6d4; color: #06b6d4;">π Loading models and analyzing... This may take a moment.</div>',
|
| 1279 |
outputs=status_html
|
| 1280 |
).then(
|
| 1281 |
analyze_keyword,
|
| 1282 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
| 1283 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
| 1284 |
).then(
|
| 1285 |
+
lambda: '<div style="text-align: center; padding: 1rem; border-radius: 8px; margin: 1rem 0; font-weight: 500; background: rgba(20, 184, 166, 0.1); border: 1px solid #14b8a6; color: #14b8a6;">β
Analysis complete! Check the results above.</div>',
|
| 1286 |
outputs=status_html
|
| 1287 |
)
|
| 1288 |
|
|
|
|
| 1297 |
inputs=[btn],
|
| 1298 |
outputs=[input_text]
|
| 1299 |
).then(
|
| 1300 |
+
lambda: '<div style="text-align: center; padding: 1rem; border-radius: 8px; margin: 1rem 0; font-weight: 500; background: rgba(6, 182, 212, 0.1); border: 1px solid #06b6d4; color: #06b6d4;">π Loading models and analyzing... This may take a moment.</div>',
|
| 1301 |
outputs=status_html
|
| 1302 |
).then(
|
| 1303 |
analyze_keyword,
|
| 1304 |
inputs=[input_text, forecast_months, growth_scenario, include_serp],
|
| 1305 |
outputs=[token_viz_html, analysis_html, json_output, evolution_chart, serp_html, ranking_chart, input_text]
|
| 1306 |
).then(
|
| 1307 |
+
lambda: '<div style="text-align: center; padding: 1rem; border-radius: 8px; margin: 1rem 0; font-weight: 500; background: rgba(20, 184, 166, 0.1); border: 1px solid #14b8a6; color: #14b8a6;">β
Analysis complete! Check the results above.</div>',
|
| 1308 |
outputs=status_html
|
| 1309 |
)
|
| 1310 |
|
| 1311 |
# Launch configuration
|
| 1312 |
if __name__ == "__main__":
|
| 1313 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|