ErikH commited on
Commit
0bb8b3e
·
1 Parent(s): f3b2fe4

Update pages/bot.py

Browse files
Files changed (1) hide show
  1. pages/bot.py +23 -2
pages/bot.py CHANGED
@@ -103,6 +103,26 @@ def main():
103
  # Erstelle die Question Answering-Pipeline für Deutsch
104
  qa_pipeline = pipeline("question-answering", model="deutsche-telekom/bert-multi-english-german-squad2", tokenizer="deutsche-telekom/bert-multi-english-german-squad2")
105
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  # Frage beantworten
107
  #answer = qa_pipeline(question=question, context=context, top_k=3)
108
  answer = qa_pipeline(question=question, context=context)
@@ -111,12 +131,13 @@ def main():
111
  st.text("Basisantwort:")
112
  st.text(answer["answer"])
113
  #st.text(answer)
114
-
115
  #Die Basisantwort müsste man jetzt ausformulieren
116
  text2text_generator = pipeline("text2text-generation", model="google/flan-t5-xxl")
117
  #newText=text2text_generator(question=question, context=answer)
118
  newText=text2text_generator("Formuliere einen neuen Satz. Frage: "+question+ " Antwort: " + answer["answer"])
119
  st.text(newText)
120
-
 
121
  if __name__ == '__main__':
122
  main()
 
103
  # Erstelle die Question Answering-Pipeline für Deutsch
104
  qa_pipeline = pipeline("question-answering", model="deutsche-telekom/bert-multi-english-german-squad2", tokenizer="deutsche-telekom/bert-multi-english-german-squad2")
105
 
106
+
107
+ # Frage beantworten und mehrere Antworten erhalten
108
+ answers = qa_pipeline(
109
+ question=question,
110
+ context=context,
111
+ #top_k=3, # Anzahl der zurückgegebenen Antworten
112
+ #top_p=0.8 # Wahrscheinlichkeit der Antwort
113
+ )
114
+
115
+ # Nur Antworten mit mindestens 200 Zeichen behalten
116
+ filtered_answers = [answer for answer in answers if len(answer['answer']) >= 200]
117
+
118
+ # Ergebnisse ausgeben
119
+ for i, answer in enumerate(filtered_answers):
120
+ st.text(f"Antwort {i+1}:")
121
+ st.text(f"Antwort: {answer['answer']}")
122
+ st.text(f"Konfidenz: {answer['score']}")
123
+
124
+
125
+ """
126
  # Frage beantworten
127
  #answer = qa_pipeline(question=question, context=context, top_k=3)
128
  answer = qa_pipeline(question=question, context=context)
 
131
  st.text("Basisantwort:")
132
  st.text(answer["answer"])
133
  #st.text(answer)
134
+
135
  #Die Basisantwort müsste man jetzt ausformulieren
136
  text2text_generator = pipeline("text2text-generation", model="google/flan-t5-xxl")
137
  #newText=text2text_generator(question=question, context=answer)
138
  newText=text2text_generator("Formuliere einen neuen Satz. Frage: "+question+ " Antwort: " + answer["answer"])
139
  st.text(newText)
140
+ """
141
+
142
  if __name__ == '__main__':
143
  main()