SahilShenoy commited on
Commit
65c4b7f
·
verified ·
1 Parent(s): 1430dff

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +61 -38
app.py CHANGED
@@ -1,31 +1,37 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
  client = InferenceClient("opennyaiorg/Aalap-Mistral-7B-v0.1-bf16")
8
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
27
 
 
 
28
  response = ""
 
29
 
30
  for message in client.chat_completion(
31
  messages,
@@ -35,29 +41,46 @@ def respond(
35
  top_p=top_p,
36
  ):
37
  token = message.choices[0].delta.content
 
 
 
 
 
 
 
38
 
 
 
 
 
 
 
 
 
39
  response += token
40
  yield response
41
 
42
- """
43
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
44
- """
45
- demo = gr.ChatInterface(
46
- respond,
47
- additional_inputs=[
48
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
- gr.Slider(
52
- minimum=0.1,
53
- maximum=1.0,
54
- value=0.95,
55
- step=0.05,
56
- label="Top-p (nucleus sampling)",
57
- ),
58
- ],
59
- )
60
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
61
 
62
  if __name__ == "__main__":
63
- demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
+ import fitz # PyMuPDF
4
 
 
 
 
5
  client = InferenceClient("opennyaiorg/Aalap-Mistral-7B-v0.1-bf16")
6
 
7
+ def extract_text_from_pdf(pdf_file):
8
+ document = fitz.open(pdf_file.name)
9
+ text = ""
10
+ for page_num in range(len(document)):
11
+ page = document.load_page(page_num)
12
+ text += page.get_text()
13
+ return text
14
 
15
+ def summarize_pdf(pdf_file, max_tokens, temperature, top_p):
16
+ text = extract_text_from_pdf(pdf_file)
17
+ response = ""
18
+ messages = [{"role": "user", "content": f"Summarize the following text: {text}"}]
 
 
 
 
 
 
 
 
 
 
 
19
 
20
+ for message in client.chat_completion(
21
+ messages,
22
+ max_tokens=max_tokens,
23
+ stream=True,
24
+ temperature=temperature,
25
+ top_p=top_p,
26
+ ):
27
+ token = message.choices[0].delta.content
28
+ response += token
29
+ yield response
30
 
31
+ def ner_pdf(pdf_file, max_tokens, temperature, top_p):
32
+ text = extract_text_from_pdf(pdf_file)
33
  response = ""
34
+ messages = [{"role": "user", "content": f"Extract named entities from the following text: {text}"}]
35
 
36
  for message in client.chat_completion(
37
  messages,
 
41
  top_p=top_p,
42
  ):
43
  token = message.choices[0].delta.content
44
+ response += token
45
+ yield response
46
+
47
+ def qa_pdf(pdf_file, question, max_tokens, temperature, top_p):
48
+ text = extract_text_from_pdf(pdf_file)
49
+ response = ""
50
+ messages = [{"role": "user", "content": f"Answer the question '{question}' based on the following text: {text}"}]
51
 
52
+ for message in client.chat_completion(
53
+ messages,
54
+ max_tokens=max_tokens,
55
+ stream=True,
56
+ temperature=temperature,
57
+ top_p=top_p,
58
+ ):
59
+ token = message.choices[0].delta.content
60
  response += token
61
  yield response
62
 
63
+ with gr.Blocks() as demo:
64
+ gr.Markdown("# NLP Tasks on PDF Documents")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65
 
66
+ with gr.Tab("Summarization"):
67
+ pdf_file = gr.File(label="Upload PDF")
68
+ summarize_button = gr.Button("Summarize")
69
+ summary_output = gr.Textbox(label="Summary")
70
+ summarize_button.click(summarize_pdf, inputs=[pdf_file, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")], outputs=summary_output)
71
+
72
+ with gr.Tab("Named Entity Recognition (NER)"):
73
+ pdf_file = gr.File(label="Upload PDF")
74
+ ner_button = gr.Button("Extract Entities")
75
+ ner_output = gr.JSON(label="Entities")
76
+ ner_button.click(ner_pdf, inputs=[pdf_file, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")], outputs=ner_output)
77
+
78
+ with gr.Tab("Question Answering"):
79
+ pdf_file = gr.File(label="Upload PDF")
80
+ question_input = gr.Textbox(label="Enter your question")
81
+ qa_button = gr.Button("Get Answer")
82
+ qa_output = gr.Textbox(label="Answer")
83
+ qa_button.click(qa_pdf, inputs=[pdf_file, question_input, gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")], outputs=qa_output)
84
 
85
  if __name__ == "__main__":
86
+ demo.launch()