Programmes commited on
Commit
1e7c141
·
verified ·
1 Parent(s): 1143590

Delete edu_pilot_gradio_space_final/rag_utils.py

Browse files
edu_pilot_gradio_space_final/rag_utils.py DELETED
@@ -1,46 +0,0 @@
1
- import faiss
2
- import pickle
3
- import numpy as np
4
- import re
5
- from sentence_transformers import SentenceTransformer
6
- from huggingface_hub import hf_hub_download
7
- from llama_cpp import Llama
8
-
9
- def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"):
10
- index = faiss.read_index(index_path)
11
- with open(doc_path, "rb") as f:
12
- documents = pickle.load(f)
13
- return index, documents
14
-
15
- def get_embedding_model():
16
- return SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
17
-
18
- def query_index(question, index, documents, model, k=3):
19
- question_embedding = model.encode([question])
20
- _, indices = index.search(np.array(question_embedding).astype("float32"), k)
21
- return [documents[i] for i in indices[0]]
22
-
23
- def nettoyer_context(context):
24
- context = re.sub(r"\[\'(.*?)\'\]", r"\1", context)
25
- context = context.replace("None", "")
26
- return context
27
-
28
-
29
-
30
- import os
31
- from huggingface_hub import InferenceClient
32
-
33
- client = InferenceClient("mistralai/Mistral-7B-Instruct-v0.1", token=os.environ.get("edup"))
34
-
35
- def generate_answer(question, context):
36
- prompt = f"""Voici des informations sur des établissements et formations :
37
-
38
- {context}
39
-
40
- Formule ta réponse comme un conseiller d’orientation bienveillant, de manière fluide et naturelle.
41
-
42
- Question : {question}
43
- Réponse :"""
44
-
45
- response = client.text_generation(prompt, max_new_tokens=300)
46
- return response