Spaces:
Running
Running
File size: 1,346 Bytes
4b4260f 87392ed 4b4260f 7c15719 4b4260f 87392ed 4b4260f 87392ed 4b4260f da32198 87392ed da32198 87392ed da32198 87392ed 4b4260f da32198 4b4260f 87392ed da32198 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
import faiss
import pickle
import numpy as np
import torch
from sentence_transformers import SentenceTransformer
from transformers import AutoModelForCausalLM, AutoTokenizer
def load_faiss_index(index_path="faiss_index/faiss_index.faiss", doc_path="faiss_index/documents.pkl"):
index = faiss.read_index(index_path)
with open(doc_path, "rb") as f:
documents = pickle.load(f)
return index, documents
def get_embedding_model():
return SentenceTransformer("sentence-transformers/multi-qa-MiniLM-L6-cos-v1")
def query_index(question, index, documents, model, k=3):
question_embedding = model.encode([question])
_, indices = index.search(np.array(question_embedding).astype("float32"), k)
return [documents[i] for i in indices[0]]
def generate_answer(question, context):
model_id = "Salesforce/codegen-350M-mono"
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.pad_token = tokenizer.eos_token
model = AutoModelForCausalLM.from_pretrained(model_id)
prompt = f"Voici un contexte :\n{context}\n\nQuestion : {question}\nRéponse :"
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True)
outputs = model.generate(**inputs, max_new_tokens=128, pad_token_id=tokenizer.eos_token_id)
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|