import streamlit as st import pinecone from langchain.embeddings.openai import OpenAIEmbeddings from langchain.vectorstores import Pinecone, Chroma from langchain.chains import RetrievalQA from langchain.chat_models import ChatOpenAI import tiktoken import random # Fetch the OpenAI API key from Streamlit secrets openai_api_key = st.secrets["openai_api_key"] # Fetch Pinecone API key and environment from Streamlit secrets pinecone_api_key = st.secrets["pinecone_api_key"] pinecone_environment = st.secrets["pinecone_environment"] # Initialize Pinecone pinecone.init(api_key=pinecone_api_key, environment=pinecone_environment) # Define the name of the Pinecone index index_name = 'mi-resource-qa' # Initialize the OpenAI embeddings object with the hardcoded API key embeddings = OpenAIEmbeddings(openai_api_key=openai_api_key) # Define functions def insert_or_fetch_embeddings(index_name): if index_name in pinecone.list_indexes(): vector_store = Pinecone.from_existing_index(index_name, embeddings) return vector_store else: raise ValueError(f"Index {index_name} does not exist. Please create it before fetching.") # Initialize or fetch Pinecone vector store vector_store = insert_or_fetch_embeddings(index_name) # calculate embedding cost using tiktoken def calculate_embedding_cost(text): import tiktoken enc = tiktoken.encoding_for_model('text-embedding-ada-002') total_tokens = len(enc.encode(text)) # print(f'Total Tokens: {total_tokens}') # print(f'Embedding Cost in USD: {total_tokens / 1000 * 0.0004:.6f}') return total_tokens, total_tokens / 1000 * 0.0004 def ask_with_memory(vector_store, query, chat_history=[]): from langchain.chains import ConversationalRetrievalChain from langchain.chat_models import ChatOpenAI llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=1, openai_api_key=openai_api_key) # The retriever is created with metadata filter directly in search_kwargs # retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source': {'$eq': 'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}}}) retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3, 'filter': {'source':'https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf'}}) chain= ConversationalRetrievalChain.from_llm(llm, retriever) result = chain({'question': query, 'chat_history': st.session_state['history']}) # Append to chat history as a dictionary st.session_state['history'].append((query, result['answer'])) return (result['answer']) # Initialize chat history if 'history' not in st.session_state: st.session_state['history'] = [] # # STREAMLIT APPLICATION SETUP WITH PASSWORD # Define the correct password # correct_password = "MiBLSi" #Add the image with a specified width image_width = 300 # Set the desired width in pixels st.image('MTSS.ai_Logo.png', width=image_width) st.subheader('Ink QA™ | Dynamic PDFs') # Using Markdown for formatted text st.markdown(""" Resource: **Intensifying Literacy Instruction: Essential Practices** """, unsafe_allow_html=True) with st.sidebar: # Password input field # password = st.text_input("Enter Password:", type="password") st.image('mimtss.png', width=200) st.image('Literacy_Cover.png', width=200) st.link_button("View | Download", "https://mimtsstac.org/sites/default/files/session-documents/Intensifying%20Literacy%20Instruction%20-%20Essential%20Practices%20%28NATIONAL%29.pdf") Audio_Header_text = """ **Tune into Dr. St. Martin's introduction**""" st.markdown(Audio_Header_text) # Path or URL to the audio file audio_file_path = 'Audio_Introduction_Literacy.m4a' # Display the audio player widget st.audio(audio_file_path, format='audio/mp4', start_time=0) # Citation text with Markdown formatting citation_Content_text = """ **Citation** St. Martin, K., Vaughn, S., Troia, G., Fien, & H., Coyne, M. (2023). *Intensifying literacy instruction: Essential practices, Version 2.0*. Lansing, MI: MiMTSS Technical Assistance Center, Michigan Department of Education. **Table of Contents** * **Introduction**: pg. 1 * **Intensifying Literacy Instruction: Essential Practices**: pg. 4 * **Purpose**: pg. 4 * **Practice 1**: Knowledge and Use of a Learning Progression for Developing Skilled Readers and Writers: pg. 6 * **Practice 2**: Design and Use of an Intervention Platform as the Foundation for Effective Intervention: pg. 13 * **Practice 3**: On-going Data-Based Decision Making for Providing and Intensifying Interventions: pg. 16 * **Practice 4**: Adaptations to Increase the Instructional Intensity of the Intervention: pg. 20 * **Practice 5**: Infrastructures to Support Students with Significant and Persistent Literacy Needs: pg. 24 * **Motivation and Engagement**: pg. 28 * **Considerations for Understanding How Students' Learning and Behavior are Enhanced**: pg. 28 * **Summary**: pg. 29 * **Endnotes**: pg. 30 * **Acknowledgment**: pg. 39 """ st.markdown(citation_Content_text) # if password == correct_password: # Define a list of possible placeholder texts placeholders = [ 'Example: Summarize the article in 200 words or less', 'Example: What are the essential practices?', 'Example: I am a teacher, why is this resource important?', 'Example: How can this resource support my instruction in reading and writing?', 'Example: Does this resource align with the learning progression for developing skilled readers and writers?', 'Example: How does this resource address the needs of students scoring below the 20th percentile?', 'Example: Are there assessment tools included in this resource to monitor student progress?', 'Example: Does this resource provide guidance on data collection and analysis for monitoring student outcomes?', "Example: How can this resource be used to support students' social-emotional development?", "Example: How does this resource align with the district's literacy goals and objectives?", 'Example: What research and evidence support the effectiveness of this resource?', 'Example: Does this resource provide guidance on implementation fidelity' ] # Select a random placeholder from the list if 'placeholder' not in st.session_state: st.session_state.placeholder = random.choice(placeholders) q = st.text_input(label='Ask a question or make a request ', value='', placeholder=st.session_state.placeholder) # q = st.text_input(label='Ask a question or make a request ', value='') k = 3 # Set k to 3 # # Initialize chat history if not present # if 'history' not in st.session_state: # st.session_state.history = [] if q: with st.spinner('Thinking...'): answer = ask_with_memory(vector_store, q, st.session_state.history) # Display the response in a text area st.text_area('Response: ', value=answer, height=400, key="response_text_area") st.success('Powered by MTSS GPT. AI can make mistakes. Consider checking important information.') # # Prepare chat history text for display # history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in st.session_state.history) # Prepare chat history text for display in reverse order history_text = "\n\n".join(f"Q: {entry[0]}\nA: {entry[1]}" for entry in reversed(st.session_state.history)) # Display chat history st.text_area('Chat History', value=history_text, height=800)