ProfessorLeVesseur commited on
Commit
beeb67a
·
verified ·
1 Parent(s): 68e6ea8

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -13
app.py CHANGED
@@ -15,10 +15,13 @@ from langchain.smith import RunEvalConfig, run_on_dataset
15
  # Load API Keys From the .env File & Load the OpenAI, Pinecone, and LangSmith Client
16
  #------------------------------------------------------------------------
17
 
18
- # Fetch the OpenAI API key from Streamlit secrets
19
- OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
20
- # Retrieve the OpenAI API Key from secrets
21
- openai.api_key = st.secrets["OPENAI_API_KEY"]
 
 
 
22
 
23
  # # Fetch Pinecone API key and environment from Streamlit secrets
24
  PINECONE_API_KEY = st.secrets["PINECONE_API_KEY"]
@@ -27,14 +30,14 @@ from pinecone import Pinecone
27
  # PINECONE_API_KEY = "555c0e70-331d-4b43-aac7-5b3aac5078d6"
28
  pc = Pinecone(api_key=PINECONE_API_KEY)
29
 
30
- os.environ["OPENAI_API_KEY"] = st.secrets["api_keys"]["OPENAI_API_KEY"]
31
- os.environ["LANGCHAIN_API_KEY"] = st.secrets["api_keys"]["LANGCHAIN_API_KEY"]
32
- # Set other LangChain configurations as environment variables
33
- os.environ["LANGCHAIN_TRACING_V2"] = "true"
34
- os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
35
- os.environ["LANGCHAIN_PROJECT"] = "Inkqa"
36
 
37
- client = Client() # Langsmith client
38
 
39
  #------------------------------------------------------------------------
40
  # Initialize
@@ -45,7 +48,9 @@ index_name = 'mimtssinkqa'
45
 
46
  # Initialize the OpenAI embeddings object
47
  from langchain_openai import OpenAIEmbeddings
48
- embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
 
 
49
 
50
  # LOAD VECTOR STORE FROM EXISTING INDEX
51
  from langchain_community.vectorstores import Pinecone
@@ -58,7 +63,8 @@ def ask_with_memory(vector_store, query, chat_history=[]):
58
 
59
  from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate
60
 
61
- llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.5, openai_api_key=OPENAI_API_KEY)
 
62
 
63
  retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3})
64
 
 
15
  # Load API Keys From the .env File & Load the OpenAI, Pinecone, and LangSmith Client
16
  #------------------------------------------------------------------------
17
 
18
+ # # Fetch the OpenAI API key from Streamlit secrets
19
+ # OPENAI_API_KEY = st.secrets["OPENAI_API_KEY"]
20
+ # # Retrieve the OpenAI API Key from secrets
21
+ # openai.api_key = st.secrets["OPENAI_API_KEY"]
22
+
23
+ os.environ["OPENAI_API_KEY"] = st.secrets["OPENAI_API_KEY"]
24
+ openai.api_key = os.getenv("OPENAI_API_KEY")
25
 
26
  # # Fetch Pinecone API key and environment from Streamlit secrets
27
  PINECONE_API_KEY = st.secrets["PINECONE_API_KEY"]
 
30
  # PINECONE_API_KEY = "555c0e70-331d-4b43-aac7-5b3aac5078d6"
31
  pc = Pinecone(api_key=PINECONE_API_KEY)
32
 
33
+ # os.environ["OPENAI_API_KEY"] = st.secrets["api_keys"]["OPENAI_API_KEY"]
34
+ # os.environ["LANGCHAIN_API_KEY"] = st.secrets["api_keys"]["LANGCHAIN_API_KEY"]
35
+ # # Set other LangChain configurations as environment variables
36
+ # os.environ["LANGCHAIN_TRACING_V2"] = "true"
37
+ # os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
38
+ # os.environ["LANGCHAIN_PROJECT"] = "Inkqa"
39
 
40
+ # client = Client() # Langsmith client
41
 
42
  #------------------------------------------------------------------------
43
  # Initialize
 
48
 
49
  # Initialize the OpenAI embeddings object
50
  from langchain_openai import OpenAIEmbeddings
51
+ # embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
52
+ embeddings = OpenAIEmbeddings()
53
+
54
 
55
  # LOAD VECTOR STORE FROM EXISTING INDEX
56
  from langchain_community.vectorstores import Pinecone
 
63
 
64
  from langchain.prompts import ChatPromptTemplate, SystemMessagePromptTemplate, HumanMessagePromptTemplate
65
 
66
+ # llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.5, openai_api_key=OPENAI_API_KEY)
67
+ llm = ChatOpenAI(model_name='gpt-3.5-turbo', temperature=0.5)
68
 
69
  retriever = vector_store.as_retriever(search_type='similarity', search_kwargs={'k': 3})
70