Delete app.py
Browse files
app.py
DELETED
|
@@ -1,188 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import spaces
|
| 3 |
-
import torch
|
| 4 |
-
from diffusers import AutoencoderKL, TCDScheduler
|
| 5 |
-
from diffusers.models.model_loading_utils import load_state_dict
|
| 6 |
-
from gradio_imageslider import ImageSlider
|
| 7 |
-
from huggingface_hub import hf_hub_download
|
| 8 |
-
from PIL import ImageDraw, ImageFont, Image
|
| 9 |
-
from controlnet_union import ControlNetModel_Union
|
| 10 |
-
from pipeline_fill_sd_xl import StableDiffusionXLFillPipeline
|
| 11 |
-
|
| 12 |
-
MODELS = {
|
| 13 |
-
"RealVisXL V5.0 Lightning": "SG161222/RealVisXL_V5.0_Lightning",
|
| 14 |
-
}
|
| 15 |
-
|
| 16 |
-
config_file = hf_hub_download(
|
| 17 |
-
"xinsir/controlnet-union-sdxl-1.0",
|
| 18 |
-
filename="config_promax.json",
|
| 19 |
-
)
|
| 20 |
-
|
| 21 |
-
config = ControlNetModel_Union.load_config(config_file)
|
| 22 |
-
controlnet_model = ControlNetModel_Union.from_config(config)
|
| 23 |
-
model_file = hf_hub_download(
|
| 24 |
-
"xinsir/controlnet-union-sdxl-1.0",
|
| 25 |
-
filename="diffusion_pytorch_model_promax.safetensors",
|
| 26 |
-
)
|
| 27 |
-
state_dict = load_state_dict(model_file)
|
| 28 |
-
model, _, _, _, _ = ControlNetModel_Union._load_pretrained_model(
|
| 29 |
-
controlnet_model, state_dict, model_file, "xinsir/controlnet-union-sdxl-1.0"
|
| 30 |
-
)
|
| 31 |
-
model.to(device="cuda", dtype=torch.float16)
|
| 32 |
-
|
| 33 |
-
vae = AutoencoderKL.from_pretrained(
|
| 34 |
-
"madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16
|
| 35 |
-
).to("cuda")
|
| 36 |
-
|
| 37 |
-
pipe = StableDiffusionXLFillPipeline.from_pretrained(
|
| 38 |
-
"SG161222/RealVisXL_V5.0_Lightning",
|
| 39 |
-
torch_dtype=torch.float16,
|
| 40 |
-
vae=vae,
|
| 41 |
-
controlnet=model,
|
| 42 |
-
variant="fp16",
|
| 43 |
-
).to("cuda")
|
| 44 |
-
|
| 45 |
-
pipe.scheduler = TCDScheduler.from_config(pipe.scheduler.config)
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
def add_watermark(image, text="ProFaker", font_path="BRLNSDB.TTF", font_size=25):
|
| 49 |
-
# Load the Berlin Sans Demi font with the specified size
|
| 50 |
-
font = ImageFont.truetype(font_path, font_size)
|
| 51 |
-
|
| 52 |
-
# Position the watermark in the bottom right corner, adjusting for text size
|
| 53 |
-
text_bbox = font.getbbox(text)
|
| 54 |
-
text_width, text_height = text_bbox[2], text_bbox[3]
|
| 55 |
-
watermark_position = (image.width - text_width - 100, image.height - text_height - 150)
|
| 56 |
-
|
| 57 |
-
# Draw the watermark text with a translucent white color
|
| 58 |
-
draw = ImageDraw.Draw(image)
|
| 59 |
-
draw.text(watermark_position, text, font=font, fill=(255, 255, 255, 150)) # RGBA for transparency
|
| 60 |
-
|
| 61 |
-
return image
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
@spaces.GPU
|
| 65 |
-
def fill_image(prompt, image, model_selection, paste_back):
|
| 66 |
-
(
|
| 67 |
-
prompt_embeds,
|
| 68 |
-
negative_prompt_embeds,
|
| 69 |
-
pooled_prompt_embeds,
|
| 70 |
-
negative_pooled_prompt_embeds,
|
| 71 |
-
) = pipe.encode_prompt(prompt, "cuda", True)
|
| 72 |
-
|
| 73 |
-
source = image["background"]
|
| 74 |
-
mask = image["layers"][0]
|
| 75 |
-
|
| 76 |
-
alpha_channel = mask.split()[3]
|
| 77 |
-
binary_mask = alpha_channel.point(lambda p: p > 0 and 255)
|
| 78 |
-
cnet_image = source.copy()
|
| 79 |
-
cnet_image.paste(0, (0, 0), binary_mask)
|
| 80 |
-
|
| 81 |
-
for image in pipe(
|
| 82 |
-
prompt_embeds=prompt_embeds,
|
| 83 |
-
negative_prompt_embeds=negative_prompt_embeds,
|
| 84 |
-
pooled_prompt_embeds=pooled_prompt_embeds,
|
| 85 |
-
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
| 86 |
-
image=cnet_image,
|
| 87 |
-
):
|
| 88 |
-
yield image, cnet_image
|
| 89 |
-
|
| 90 |
-
print(f"{model_selection=}")
|
| 91 |
-
print(f"{paste_back=}")
|
| 92 |
-
|
| 93 |
-
if paste_back:
|
| 94 |
-
image = image.convert("RGBA")
|
| 95 |
-
cnet_image.paste(image, (0, 0), binary_mask)
|
| 96 |
-
else:
|
| 97 |
-
cnet_image = image
|
| 98 |
-
|
| 99 |
-
cnet_image = add_watermark(cnet_image)
|
| 100 |
-
yield source, cnet_image
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def clear_result():
|
| 104 |
-
return gr.update(value=None)
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
title = """<h1 align="center">ProFaker's Editing</h1>"""
|
| 108 |
-
|
| 109 |
-
with gr.Blocks() as demo:
|
| 110 |
-
gr.HTML(title)
|
| 111 |
-
with gr.Row():
|
| 112 |
-
with gr.Column():
|
| 113 |
-
prompt = gr.Textbox(
|
| 114 |
-
label="Prompt",
|
| 115 |
-
info="Describe what to inpaint the mask with",
|
| 116 |
-
lines=3,
|
| 117 |
-
)
|
| 118 |
-
with gr.Column():
|
| 119 |
-
model_selection = gr.Dropdown(
|
| 120 |
-
choices=list(MODELS.keys()),
|
| 121 |
-
value="RealVisXL V5.0 Lightning",
|
| 122 |
-
label="Model",
|
| 123 |
-
)
|
| 124 |
-
|
| 125 |
-
with gr.Row():
|
| 126 |
-
with gr.Column():
|
| 127 |
-
run_button = gr.Button("Generate")
|
| 128 |
-
|
| 129 |
-
with gr.Column():
|
| 130 |
-
paste_back = gr.Checkbox(True, label="Paste back original")
|
| 131 |
-
|
| 132 |
-
with gr.Row():
|
| 133 |
-
input_image = gr.ImageMask(
|
| 134 |
-
type="pil", label="Input Image", crop_size=(1024, 1024), layers=False
|
| 135 |
-
)
|
| 136 |
-
|
| 137 |
-
result = ImageSlider(
|
| 138 |
-
interactive=False,
|
| 139 |
-
label="Generated Image",
|
| 140 |
-
)
|
| 141 |
-
|
| 142 |
-
use_as_input_button = gr.Button("Use as Input Image", visible=False)
|
| 143 |
-
|
| 144 |
-
def use_output_as_input(output_image):
|
| 145 |
-
return gr.update(value=output_image[1])
|
| 146 |
-
|
| 147 |
-
use_as_input_button.click(
|
| 148 |
-
fn=use_output_as_input, inputs=[result], outputs=[input_image]
|
| 149 |
-
)
|
| 150 |
-
|
| 151 |
-
run_button.click(
|
| 152 |
-
fn=clear_result,
|
| 153 |
-
inputs=None,
|
| 154 |
-
outputs=result,
|
| 155 |
-
).then(
|
| 156 |
-
fn=lambda: gr.update(visible=False),
|
| 157 |
-
inputs=None,
|
| 158 |
-
outputs=use_as_input_button,
|
| 159 |
-
).then(
|
| 160 |
-
fn=fill_image,
|
| 161 |
-
inputs=[prompt, input_image, model_selection, paste_back],
|
| 162 |
-
outputs=result,
|
| 163 |
-
).then(
|
| 164 |
-
fn=lambda: gr.update(visible=True),
|
| 165 |
-
inputs=None,
|
| 166 |
-
outputs=use_as_input_button,
|
| 167 |
-
)
|
| 168 |
-
|
| 169 |
-
prompt.submit(
|
| 170 |
-
fn=clear_result,
|
| 171 |
-
inputs=None,
|
| 172 |
-
outputs=result,
|
| 173 |
-
).then(
|
| 174 |
-
fn=lambda: gr.update(visible=False),
|
| 175 |
-
inputs=None,
|
| 176 |
-
outputs=use_as_input_button,
|
| 177 |
-
).then(
|
| 178 |
-
fn=fill_image,
|
| 179 |
-
inputs=[prompt, input_image, model_selection, paste_back],
|
| 180 |
-
outputs=result,
|
| 181 |
-
).then(
|
| 182 |
-
fn=lambda: gr.update(visible=True),
|
| 183 |
-
inputs=None,
|
| 184 |
-
outputs=use_as_input_button,
|
| 185 |
-
)
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
demo.queue(max_size=12).launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|