Spaces:
Running
Running
Upload index.html
Browse files- index.html +0 -903
index.html
CHANGED
@@ -1,903 +0,0 @@
|
|
1 |
-
<!DOCTYPE html>
|
2 |
-
<html lang="en">
|
3 |
-
<head>
|
4 |
-
<meta charset="UTF-8">
|
5 |
-
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
-
<title>AI Explainer: How Neural Networks Work</title>
|
7 |
-
<style>
|
8 |
-
* {
|
9 |
-
margin: 0;
|
10 |
-
padding: 0;
|
11 |
-
box-sizing: border-box;
|
12 |
-
}
|
13 |
-
|
14 |
-
body {
|
15 |
-
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
|
16 |
-
background: #0a0a0a;
|
17 |
-
color: #e0e0e0;
|
18 |
-
line-height: 1.6;
|
19 |
-
overflow-x: hidden;
|
20 |
-
}
|
21 |
-
|
22 |
-
.container {
|
23 |
-
max-width: 1200px;
|
24 |
-
margin: 0 auto;
|
25 |
-
padding: 20px;
|
26 |
-
}
|
27 |
-
|
28 |
-
header {
|
29 |
-
text-align: center;
|
30 |
-
padding: 40px 20px;
|
31 |
-
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%);
|
32 |
-
margin-bottom: 40px;
|
33 |
-
border-radius: 20px;
|
34 |
-
}
|
35 |
-
|
36 |
-
h1 {
|
37 |
-
font-size: clamp(2rem, 5vw, 3rem);
|
38 |
-
margin-bottom: 10px;
|
39 |
-
background: linear-gradient(135deg, #fff 0%, #a8dadc 100%);
|
40 |
-
-webkit-background-clip: text;
|
41 |
-
-webkit-text-fill-color: transparent;
|
42 |
-
}
|
43 |
-
|
44 |
-
.mode-toggle {
|
45 |
-
display: flex;
|
46 |
-
justify-content: center;
|
47 |
-
gap: 20px;
|
48 |
-
margin: 30px 0;
|
49 |
-
flex-wrap: wrap;
|
50 |
-
}
|
51 |
-
|
52 |
-
.mode-btn {
|
53 |
-
padding: 12px 30px;
|
54 |
-
background: #2a5298;
|
55 |
-
color: white;
|
56 |
-
border: none;
|
57 |
-
border-radius: 50px;
|
58 |
-
cursor: pointer;
|
59 |
-
font-size: 16px;
|
60 |
-
transition: all 0.3s ease;
|
61 |
-
font-weight: 600;
|
62 |
-
}
|
63 |
-
|
64 |
-
.mode-btn.active {
|
65 |
-
background: #4CAF50;
|
66 |
-
transform: scale(1.05);
|
67 |
-
}
|
68 |
-
|
69 |
-
.mode-btn:hover {
|
70 |
-
transform: translateY(-2px);
|
71 |
-
box-shadow: 0 5px 15px rgba(74, 144, 226, 0.3);
|
72 |
-
}
|
73 |
-
|
74 |
-
.section {
|
75 |
-
background: #1a1a1a;
|
76 |
-
padding: 30px;
|
77 |
-
margin-bottom: 30px;
|
78 |
-
border-radius: 20px;
|
79 |
-
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.5);
|
80 |
-
}
|
81 |
-
|
82 |
-
.section h2 {
|
83 |
-
color: #4CAF50;
|
84 |
-
margin-bottom: 20px;
|
85 |
-
font-size: clamp(1.5rem, 4vw, 2rem);
|
86 |
-
}
|
87 |
-
|
88 |
-
.section h3 {
|
89 |
-
color: #81C784;
|
90 |
-
margin: 20px 0 10px 0;
|
91 |
-
font-size: clamp(1.2rem, 3vw, 1.5rem);
|
92 |
-
}
|
93 |
-
|
94 |
-
.math-content {
|
95 |
-
background: #0d0d0d;
|
96 |
-
padding: 20px;
|
97 |
-
border-radius: 10px;
|
98 |
-
overflow-x: auto;
|
99 |
-
margin: 15px 0;
|
100 |
-
border: 1px solid #333;
|
101 |
-
}
|
102 |
-
|
103 |
-
.learn-content {
|
104 |
-
background: #1e3c72;
|
105 |
-
padding: 20px;
|
106 |
-
border-radius: 10px;
|
107 |
-
margin: 15px 0;
|
108 |
-
line-height: 1.8;
|
109 |
-
}
|
110 |
-
|
111 |
-
#xor-demo {
|
112 |
-
background: #0d0d0d;
|
113 |
-
padding: 20px;
|
114 |
-
border-radius: 15px;
|
115 |
-
margin: 20px 0;
|
116 |
-
}
|
117 |
-
|
118 |
-
#network-canvas {
|
119 |
-
width: 100%;
|
120 |
-
max-width: 800px;
|
121 |
-
height: 400px;
|
122 |
-
background: #000;
|
123 |
-
border-radius: 10px;
|
124 |
-
margin: 20px auto;
|
125 |
-
display: block;
|
126 |
-
}
|
127 |
-
|
128 |
-
.controls {
|
129 |
-
display: flex;
|
130 |
-
gap: 15px;
|
131 |
-
justify-content: center;
|
132 |
-
flex-wrap: wrap;
|
133 |
-
margin: 20px 0;
|
134 |
-
}
|
135 |
-
|
136 |
-
.control-btn {
|
137 |
-
padding: 10px 25px;
|
138 |
-
background: #4CAF50;
|
139 |
-
color: white;
|
140 |
-
border: none;
|
141 |
-
border-radius: 5px;
|
142 |
-
cursor: pointer;
|
143 |
-
font-size: 16px;
|
144 |
-
transition: all 0.3s ease;
|
145 |
-
}
|
146 |
-
|
147 |
-
.control-btn:hover {
|
148 |
-
background: #45a049;
|
149 |
-
transform: translateY(-2px);
|
150 |
-
}
|
151 |
-
|
152 |
-
.control-btn:disabled {
|
153 |
-
background: #666;
|
154 |
-
cursor: not-allowed;
|
155 |
-
}
|
156 |
-
|
157 |
-
.stats {
|
158 |
-
display: grid;
|
159 |
-
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
160 |
-
gap: 15px;
|
161 |
-
margin: 20px 0;
|
162 |
-
}
|
163 |
-
|
164 |
-
.stat-box {
|
165 |
-
background: #1a1a1a;
|
166 |
-
padding: 15px;
|
167 |
-
border-radius: 10px;
|
168 |
-
text-align: center;
|
169 |
-
border: 1px solid #333;
|
170 |
-
}
|
171 |
-
|
172 |
-
.stat-label {
|
173 |
-
color: #888;
|
174 |
-
font-size: 14px;
|
175 |
-
}
|
176 |
-
|
177 |
-
.stat-value {
|
178 |
-
color: #4CAF50;
|
179 |
-
font-size: 24px;
|
180 |
-
font-weight: bold;
|
181 |
-
margin-top: 5px;
|
182 |
-
}
|
183 |
-
|
184 |
-
.loss-chart {
|
185 |
-
width: 100%;
|
186 |
-
height: 200px;
|
187 |
-
background: #000;
|
188 |
-
border-radius: 10px;
|
189 |
-
margin: 20px 0;
|
190 |
-
}
|
191 |
-
|
192 |
-
.formula {
|
193 |
-
font-family: 'Courier New', monospace;
|
194 |
-
color: #64B5F6;
|
195 |
-
padding: 10px;
|
196 |
-
background: rgba(0, 0, 0, 0.5);
|
197 |
-
border-radius: 5px;
|
198 |
-
overflow-x: auto;
|
199 |
-
white-space: nowrap;
|
200 |
-
margin: 10px 0;
|
201 |
-
}
|
202 |
-
|
203 |
-
.highlight {
|
204 |
-
background: #4CAF50;
|
205 |
-
color: #000;
|
206 |
-
padding: 2px 6px;
|
207 |
-
border-radius: 3px;
|
208 |
-
font-weight: bold;
|
209 |
-
}
|
210 |
-
|
211 |
-
@media (max-width: 768px) {
|
212 |
-
.container {
|
213 |
-
padding: 10px;
|
214 |
-
}
|
215 |
-
|
216 |
-
.section {
|
217 |
-
padding: 20px;
|
218 |
-
}
|
219 |
-
|
220 |
-
#network-canvas {
|
221 |
-
height: 300px;
|
222 |
-
}
|
223 |
-
|
224 |
-
.controls {
|
225 |
-
gap: 10px;
|
226 |
-
}
|
227 |
-
|
228 |
-
.control-btn {
|
229 |
-
padding: 8px 20px;
|
230 |
-
font-size: 14px;
|
231 |
-
}
|
232 |
-
}
|
233 |
-
|
234 |
-
.mode-content {
|
235 |
-
display: none;
|
236 |
-
}
|
237 |
-
|
238 |
-
.mode-content.active {
|
239 |
-
display: block;
|
240 |
-
}
|
241 |
-
|
242 |
-
.animated-number {
|
243 |
-
transition: all 0.3s ease;
|
244 |
-
}
|
245 |
-
|
246 |
-
@keyframes pulse {
|
247 |
-
0% { transform: scale(1); }
|
248 |
-
50% { transform: scale(1.1); }
|
249 |
-
100% { transform: scale(1); }
|
250 |
-
}
|
251 |
-
|
252 |
-
.pulse {
|
253 |
-
animation: pulse 0.5s ease;
|
254 |
-
}
|
255 |
-
</style>
|
256 |
-
</head>
|
257 |
-
<body>
|
258 |
-
<div class="container">
|
259 |
-
<header>
|
260 |
-
<h1>🧠 How AI Really Works</h1>
|
261 |
-
<p>An Interactive Journey Inside Neural Networks</p>
|
262 |
-
</header>
|
263 |
-
|
264 |
-
<div class="mode-toggle">
|
265 |
-
<button class="mode-btn active" onclick="setMode('learn')">🎓 Learn Mode</button>
|
266 |
-
<button class="mode-btn" onclick="setMode('math')">🔢 Math Mode</button>
|
267 |
-
</div>
|
268 |
-
|
269 |
-
<div class="section">
|
270 |
-
<h2>What is a Neural Network?</h2>
|
271 |
-
|
272 |
-
<div class="mode-content learn-mode active">
|
273 |
-
<div class="learn-content">
|
274 |
-
<p>Imagine your brain is made of billions of tiny decision-makers called neurons. Each neuron:</p>
|
275 |
-
<ul style="margin: 15px 0; padding-left: 30px;">
|
276 |
-
<li>🎯 Takes in information (inputs)</li>
|
277 |
-
<li>🤔 Thinks about it (processing)</li>
|
278 |
-
<li>💡 Makes a decision (output)</li>
|
279 |
-
</ul>
|
280 |
-
<p>An AI neural network works the same way! It's like a simplified brain made of math. Let's see it in action!</p>
|
281 |
-
</div>
|
282 |
-
</div>
|
283 |
-
|
284 |
-
<div class="mode-content math-mode">
|
285 |
-
<div class="math-content">
|
286 |
-
<p>A neural network is a function approximator that transforms inputs through layers of neurons:</p>
|
287 |
-
<div class="formula">
|
288 |
-
f(x) = σ(W₃ · σ(W₂ · σ(W₁ · x + b₁) + b₂) + b₃)
|
289 |
-
</div>
|
290 |
-
<p>Where:</p>
|
291 |
-
<ul style="margin: 15px 0; padding-left: 30px;">
|
292 |
-
<li>x = input vector</li>
|
293 |
-
<li>Wᵢ = weight matrix for layer i</li>
|
294 |
-
<li>bᵢ = bias vector for layer i</li>
|
295 |
-
<li>σ = activation function (e.g., ReLU, sigmoid)</li>
|
296 |
-
</ul>
|
297 |
-
</div>
|
298 |
-
</div>
|
299 |
-
</div>
|
300 |
-
|
301 |
-
<div class="section">
|
302 |
-
<h2>🎮 Live XOR Training Demo</h2>
|
303 |
-
<p>Watch an AI learn the XOR problem in real-time! XOR outputs 1 when inputs are different, 0 when same.</p>
|
304 |
-
|
305 |
-
<div id="xor-demo">
|
306 |
-
<canvas id="network-canvas"></canvas>
|
307 |
-
|
308 |
-
<div class="controls">
|
309 |
-
<button class="control-btn" onclick="startTraining()">▶️ Start Training</button>
|
310 |
-
<button class="control-btn" onclick="pauseTraining()">⏸️ Pause</button>
|
311 |
-
<button class="control-btn" onclick="resetNetwork()">🔄 Reset</button>
|
312 |
-
<button class="control-btn" onclick="stepTraining()">⏭️ Step</button>
|
313 |
-
</div>
|
314 |
-
|
315 |
-
<div class="stats">
|
316 |
-
<div class="stat-box">
|
317 |
-
<div class="stat-label">Epoch</div>
|
318 |
-
<div class="stat-value animated-number" id="epoch">0</div>
|
319 |
-
</div>
|
320 |
-
<div class="stat-box">
|
321 |
-
<div class="stat-label">Loss</div>
|
322 |
-
<div class="stat-value animated-number" id="loss">1.000</div>
|
323 |
-
</div>
|
324 |
-
<div class="stat-box">
|
325 |
-
<div class="stat-label">Accuracy</div>
|
326 |
-
<div class="stat-value animated-number" id="accuracy">0%</div>
|
327 |
-
</div>
|
328 |
-
<div class="stat-box">
|
329 |
-
<div class="stat-label">Learning Rate</div>
|
330 |
-
<div class="stat-value" id="learning-rate">0.1</div>
|
331 |
-
</div>
|
332 |
-
</div>
|
333 |
-
|
334 |
-
<canvas id="loss-chart" class="loss-chart"></canvas>
|
335 |
-
</div>
|
336 |
-
</div>
|
337 |
-
|
338 |
-
<div class="section">
|
339 |
-
<h2>How Does Learning Work?</h2>
|
340 |
-
|
341 |
-
<div class="mode-content learn-mode active">
|
342 |
-
<h3>🎯 Forward Pass: Making Predictions</h3>
|
343 |
-
<div class="learn-content">
|
344 |
-
<p>The network makes a prediction by passing data forward through each layer:</p>
|
345 |
-
<ol style="margin: 15px 0; padding-left: 30px;">
|
346 |
-
<li><span class="highlight">Input</span>: Feed in the data (like 0,1 for XOR)</li>
|
347 |
-
<li><span class="highlight">Multiply & Add</span>: Each connection has a "strength" (weight)</li>
|
348 |
-
<li><span class="highlight">Activate</span>: Decide if the neuron should "fire"</li>
|
349 |
-
<li><span class="highlight">Output</span>: Get the final prediction</li>
|
350 |
-
</ol>
|
351 |
-
</div>
|
352 |
-
|
353 |
-
<h3>📉 Backward Pass: Learning from Mistakes</h3>
|
354 |
-
<div class="learn-content">
|
355 |
-
<p>When the network is wrong, it learns by adjusting its connections:</p>
|
356 |
-
<ol style="margin: 15px 0; padding-left: 30px;">
|
357 |
-
<li><span class="highlight">Calculate Error</span>: How wrong was the prediction?</li>
|
358 |
-
<li><span class="highlight">Blame Game</span>: Which connections caused the error?</li>
|
359 |
-
<li><span class="highlight">Adjust Weights</span>: Make connections stronger or weaker</li>
|
360 |
-
<li><span class="highlight">Repeat</span>: Try again with new weights!</li>
|
361 |
-
</ol>
|
362 |
-
</div>
|
363 |
-
</div>
|
364 |
-
|
365 |
-
<div class="mode-content math-mode">
|
366 |
-
<h3>Forward Propagation</h3>
|
367 |
-
<div class="math-content">
|
368 |
-
<p>For each layer l:</p>
|
369 |
-
<div class="formula">
|
370 |
-
z[l] = W[l] · a[l-1] + b[l]
|
371 |
-
</div>
|
372 |
-
<div class="formula">
|
373 |
-
a[l] = σ(z[l])
|
374 |
-
</div>
|
375 |
-
<p>Where a[0] = x (input) and a[L] = ŷ (output)</p>
|
376 |
-
</div>
|
377 |
-
|
378 |
-
<h3>Backpropagation</h3>
|
379 |
-
<div class="math-content">
|
380 |
-
<p>Loss function (Mean Squared Error):</p>
|
381 |
-
<div class="formula">
|
382 |
-
L = ½ Σ(y - ŷ)²
|
383 |
-
</div>
|
384 |
-
<p>Gradient computation:</p>
|
385 |
-
<div class="formula">
|
386 |
-
δ[L] = ∇ₐL ⊙ σ'(z[L])
|
387 |
-
</div>
|
388 |
-
<div class="formula">
|
389 |
-
δ[l] = (W[l+1]ᵀ · δ[l+1]) ⊙ σ'(z[l])
|
390 |
-
</div>
|
391 |
-
<p>Weight update:</p>
|
392 |
-
<div class="formula">
|
393 |
-
W[l] = W[l] - α · δ[l] · a[l-1]ᵀ
|
394 |
-
</div>
|
395 |
-
<div class="formula">
|
396 |
-
b[l] = b[l] - α · δ[l]
|
397 |
-
</div>
|
398 |
-
</div>
|
399 |
-
</div>
|
400 |
-
</div>
|
401 |
-
|
402 |
-
<div class="section">
|
403 |
-
<h2>Key Components Explained</h2>
|
404 |
-
|
405 |
-
<div class="mode-content learn-mode active">
|
406 |
-
<h3>🔗 Weights & Biases</h3>
|
407 |
-
<div class="learn-content">
|
408 |
-
<p><span class="highlight">Weights</span> are like volume knobs - they control how much each input matters.</p>
|
409 |
-
<p><span class="highlight">Biases</span> are like thresholds - they decide when a neuron should activate.</p>
|
410 |
-
</div>
|
411 |
-
|
412 |
-
<h3>⚡ Activation Functions</h3>
|
413 |
-
<div class="learn-content">
|
414 |
-
<p>These decide if a neuron should "fire" or not:</p>
|
415 |
-
<ul style="margin: 15px 0; padding-left: 30px;">
|
416 |
-
<li><span class="highlight">ReLU</span>: If positive, pass it on. If negative, block it!</li>
|
417 |
-
<li><span class="highlight">Sigmoid</span>: Squash everything between 0 and 1</li>
|
418 |
-
<li><span class="highlight">Tanh</span>: Squash everything between -1 and 1</li>
|
419 |
-
</ul>
|
420 |
-
</div>
|
421 |
-
|
422 |
-
<h3>🎯 Gradient Descent</h3>
|
423 |
-
<div class="learn-content">
|
424 |
-
<p>Imagine you're blindfolded on a hill, trying to reach the bottom:</p>
|
425 |
-
<ol style="margin: 15px 0; padding-left: 30px;">
|
426 |
-
<li>Feel the slope around you (calculate gradient)</li>
|
427 |
-
<li>Take a small step downhill (adjust weights)</li>
|
428 |
-
<li>Repeat until you reach the bottom (minimum loss)</li>
|
429 |
-
</ol>
|
430 |
-
</div>
|
431 |
-
</div>
|
432 |
-
|
433 |
-
<div class="mode-content math-mode">
|
434 |
-
<h3>Activation Functions</h3>
|
435 |
-
<div class="math-content">
|
436 |
-
<p><strong>ReLU:</strong></p>
|
437 |
-
<div class="formula">
|
438 |
-
f(x) = max(0, x)
|
439 |
-
</div>
|
440 |
-
<div class="formula">
|
441 |
-
f'(x) = {1 if x > 0, 0 if x ≤ 0}
|
442 |
-
</div>
|
443 |
-
|
444 |
-
<p><strong>Sigmoid:</strong></p>
|
445 |
-
<div class="formula">
|
446 |
-
σ(x) = 1 / (1 + e⁻ˣ)
|
447 |
-
</div>
|
448 |
-
<div class="formula">
|
449 |
-
σ'(x) = σ(x) · (1 - σ(x))
|
450 |
-
</div>
|
451 |
-
|
452 |
-
<p><strong>Tanh:</strong></p>
|
453 |
-
<div class="formula">
|
454 |
-
tanh(x) = (eˣ - e⁻ˣ) / (eˣ + e⁻ˣ)
|
455 |
-
</div>
|
456 |
-
<div class="formula">
|
457 |
-
tanh'(x) = 1 - tanh²(x)
|
458 |
-
</div>
|
459 |
-
</div>
|
460 |
-
|
461 |
-
<h3>Gradient Descent Update Rule</h3>
|
462 |
-
<div class="math-content">
|
463 |
-
<div class="formula">
|
464 |
-
θₜ₊₁ = θₜ - α · ∇θ L(θₜ)
|
465 |
-
</div>
|
466 |
-
<p>Where:</p>
|
467 |
-
<ul style="margin: 15px 0; padding-left: 30px;">
|
468 |
-
<li>θ = parameters (weights and biases)</li>
|
469 |
-
<li>α = learning rate</li>
|
470 |
-
<li>∇θ L = gradient of loss with respect to parameters</li>
|
471 |
-
</ul>
|
472 |
-
</div>
|
473 |
-
</div>
|
474 |
-
</div>
|
475 |
-
</div>
|
476 |
-
|
477 |
-
<script>
|
478 |
-
// Global variables
|
479 |
-
let mode = 'learn';
|
480 |
-
let network = null;
|
481 |
-
let training = false;
|
482 |
-
let epoch = 0;
|
483 |
-
let lossHistory = [];
|
484 |
-
const canvas = document.getElementById('network-canvas');
|
485 |
-
const ctx = canvas.getContext('2d');
|
486 |
-
const lossCanvas = document.getElementById('loss-chart');
|
487 |
-
const lossCtx = lossCanvas.getContext('2d');
|
488 |
-
|
489 |
-
// Set canvas sizes
|
490 |
-
function resizeCanvases() {
|
491 |
-
canvas.width = canvas.offsetWidth;
|
492 |
-
canvas.height = canvas.offsetHeight;
|
493 |
-
lossCanvas.width = lossCanvas.offsetWidth;
|
494 |
-
lossCanvas.height = lossCanvas.offsetHeight;
|
495 |
-
}
|
496 |
-
resizeCanvases();
|
497 |
-
window.addEventListener('resize', resizeCanvases);
|
498 |
-
|
499 |
-
// Mode switching
|
500 |
-
function setMode(newMode) {
|
501 |
-
mode = newMode;
|
502 |
-
document.querySelectorAll('.mode-btn').forEach(btn => {
|
503 |
-
btn.classList.toggle('active', btn.textContent.toLowerCase().includes(newMode));
|
504 |
-
});
|
505 |
-
document.querySelectorAll('.mode-content').forEach(content => {
|
506 |
-
content.classList.toggle('active', content.classList.contains(`${newMode}-mode`));
|
507 |
-
});
|
508 |
-
}
|
509 |
-
|
510 |
-
// Neural Network Class
|
511 |
-
class NeuralNetwork {
|
512 |
-
constructor() {
|
513 |
-
// Network architecture: 2-25-25-1 (roughly 100 parameters)
|
514 |
-
this.layers = [2, 25, 25, 1];
|
515 |
-
this.weights = [];
|
516 |
-
this.biases = [];
|
517 |
-
this.activations = [];
|
518 |
-
this.zValues = [];
|
519 |
-
this.gradients = [];
|
520 |
-
this.learningRate = 0.1;
|
521 |
-
|
522 |
-
this.initializeNetwork();
|
523 |
-
}
|
524 |
-
|
525 |
-
initializeNetwork() {
|
526 |
-
// Xavier initialization
|
527 |
-
for (let i = 1; i < this.layers.length; i++) {
|
528 |
-
const rows = this.layers[i];
|
529 |
-
const cols = this.layers[i-1];
|
530 |
-
const scale = Math.sqrt(2.0 / cols);
|
531 |
-
|
532 |
-
// Initialize weights
|
533 |
-
this.weights[i-1] = [];
|
534 |
-
for (let r = 0; r < rows; r++) {
|
535 |
-
this.weights[i-1][r] = [];
|
536 |
-
for (let c = 0; c < cols; c++) {
|
537 |
-
this.weights[i-1][r][c] = (Math.random() * 2 - 1) * scale;
|
538 |
-
}
|
539 |
-
}
|
540 |
-
|
541 |
-
// Initialize biases
|
542 |
-
this.biases[i-1] = new Array(rows).fill(0);
|
543 |
-
}
|
544 |
-
}
|
545 |
-
|
546 |
-
sigmoid(x) {
|
547 |
-
return 1 / (1 + Math.exp(-x));
|
548 |
-
}
|
549 |
-
|
550 |
-
sigmoidDerivative(x) {
|
551 |
-
const s = this.sigmoid(x);
|
552 |
-
return s * (1 - s);
|
553 |
-
}
|
554 |
-
|
555 |
-
relu(x) {
|
556 |
-
return Math.max(0, x);
|
557 |
-
}
|
558 |
-
|
559 |
-
reluDerivative(x) {
|
560 |
-
return x > 0 ? 1 : 0;
|
561 |
-
}
|
562 |
-
|
563 |
-
forward(input) {
|
564 |
-
this.activations = [input];
|
565 |
-
this.zValues = [];
|
566 |
-
|
567 |
-
for (let i = 0; i < this.weights.length; i++) {
|
568 |
-
const z = [];
|
569 |
-
const a = [];
|
570 |
-
|
571 |
-
for (let j = 0; j < this.weights[i].length; j++) {
|
572 |
-
let sum = this.biases[i][j];
|
573 |
-
for (let k = 0; k < this.weights[i][j].length; k++) {
|
574 |
-
sum += this.weights[i][j][k] * this.activations[i][k];
|
575 |
-
}
|
576 |
-
z.push(sum);
|
577 |
-
|
578 |
-
// Use ReLU for hidden layers, sigmoid for output
|
579 |
-
if (i < this.weights.length - 1) {
|
580 |
-
a.push(this.relu(sum));
|
581 |
-
} else {
|
582 |
-
a.push(this.sigmoid(sum));
|
583 |
-
}
|
584 |
-
}
|
585 |
-
|
586 |
-
this.zValues.push(z);
|
587 |
-
this.activations.push(a);
|
588 |
-
}
|
589 |
-
|
590 |
-
return this.activations[this.activations.length - 1][0];
|
591 |
-
}
|
592 |
-
|
593 |
-
backward(input, target) {
|
594 |
-
const output = this.forward(input);
|
595 |
-
const error = output - target;
|
596 |
-
|
597 |
-
// Initialize gradients
|
598 |
-
this.gradients = [];
|
599 |
-
|
600 |
-
// Output layer gradients
|
601 |
-
let delta = [error * this.sigmoidDerivative(this.zValues[this.zValues.length - 1][0])];
|
602 |
-
this.gradients.unshift(delta);
|
603 |
-
|
604 |
-
// Hidden layer gradients
|
605 |
-
for (let i = this.weights.length - 2; i >= 0; i--) {
|
606 |
-
const newDelta = [];
|
607 |
-
for (let j = 0; j < this.weights[i].length; j++) {
|
608 |
-
let sum = 0;
|
609 |
-
for (let k = 0; k < delta.length; k++) {
|
610 |
-
sum += this.weights[i+1][k][j] * delta[k];
|
611 |
-
}
|
612 |
-
const activation = i > 0 ?
|
613 |
-
this.reluDerivative(this.zValues[i][j]) :
|
614 |
-
this.reluDerivative(this.zValues[i][j]);
|
615 |
-
newDelta.push(sum * activation);
|
616 |
-
}
|
617 |
-
delta = newDelta;
|
618 |
-
this.gradients.unshift(delta);
|
619 |
-
}
|
620 |
-
|
621 |
-
// Update weights and biases
|
622 |
-
for (let i = 0; i < this.weights.length; i++) {
|
623 |
-
for (let j = 0; j < this.weights[i].length; j++) {
|
624 |
-
for (let k = 0; k < this.weights[i][j].length; k++) {
|
625 |
-
this.weights[i][j][k] -= this.learningRate * this.gradients[i][j] * this.activations[i][k];
|
626 |
-
}
|
627 |
-
this.biases[i][j] -= this.learningRate * this.gradients[i][j];
|
628 |
-
}
|
629 |
-
}
|
630 |
-
|
631 |
-
return error * error;
|
632 |
-
}
|
633 |
-
|
634 |
-
train(inputs, targets) {
|
635 |
-
let totalLoss = 0;
|
636 |
-
for (let i = 0; i < inputs.length; i++) {
|
637 |
-
totalLoss += this.backward(inputs[i], targets[i]);
|
638 |
-
}
|
639 |
-
return totalLoss / inputs.length;
|
640 |
-
}
|
641 |
-
|
642 |
-
predict(input) {
|
643 |
-
return this.forward(input);
|
644 |
-
}
|
645 |
-
}
|
646 |
-
|
647 |
-
// XOR training data
|
648 |
-
const xorInputs = [[0, 0], [0, 1], [1, 0], [1, 1]];
|
649 |
-
const xorTargets = [0, 1, 1, 0];
|
650 |
-
|
651 |
-
// Initialize network
|
652 |
-
function resetNetwork() {
|
653 |
-
network = new NeuralNetwork();
|
654 |
-
epoch = 0;
|
655 |
-
lossHistory = [];
|
656 |
-
training = false;
|
657 |
-
updateStats();
|
658 |
-
drawNetwork();
|
659 |
-
drawLossChart();
|
660 |
-
}
|
661 |
-
|
662 |
-
// Training functions
|
663 |
-
function startTraining() {
|
664 |
-
training = true;
|
665 |
-
trainLoop();
|
666 |
-
}
|
667 |
-
|
668 |
-
function pauseTraining() {
|
669 |
-
training = false;
|
670 |
-
}
|
671 |
-
|
672 |
-
function stepTraining() {
|
673 |
-
if (!network) resetNetwork();
|
674 |
-
trainStep();
|
675 |
-
}
|
676 |
-
|
677 |
-
function trainStep() {
|
678 |
-
const loss = network.train(xorInputs, xorTargets);
|
679 |
-
epoch++;
|
680 |
-
lossHistory.push(loss);
|
681 |
-
if (lossHistory.length > 100) lossHistory.shift();
|
682 |
-
|
683 |
-
updateStats();
|
684 |
-
drawNetwork();
|
685 |
-
drawLossChart();
|
686 |
-
}
|
687 |
-
|
688 |
-
function trainLoop() {
|
689 |
-
if (!training) return;
|
690 |
-
|
691 |
-
trainStep();
|
692 |
-
|
693 |
-
if (epoch < 1000 && lossHistory[lossHistory.length - 1] > 0.001) {
|
694 |
-
requestAnimationFrame(trainLoop);
|
695 |
-
} else {
|
696 |
-
training = false;
|
697 |
-
}
|
698 |
-
}
|
699 |
-
|
700 |
-
// Update statistics
|
701 |
-
function updateStats() {
|
702 |
-
document.getElementById('epoch').textContent = epoch;
|
703 |
-
|
704 |
-
const loss = lossHistory.length > 0 ? lossHistory[lossHistory.length - 1] : 1;
|
705 |
-
document.getElementById('loss').textContent = loss.toFixed(4);
|
706 |
-
|
707 |
-
// Calculate accuracy
|
708 |
-
let correct = 0;
|
709 |
-
for (let i = 0; i < xorInputs.length; i++) {
|
710 |
-
const prediction = network ? network.predict(xorInputs[i]) : 0.5;
|
711 |
-
const rounded = Math.round(prediction);
|
712 |
-
if (rounded === xorTargets[i]) correct++;
|
713 |
-
}
|
714 |
-
const accuracy = (correct / xorInputs.length * 100).toFixed(0);
|
715 |
-
document.getElementById('accuracy').textContent = accuracy + '%';
|
716 |
-
|
717 |
-
// Add pulse animation on high accuracy
|
718 |
-
if (accuracy >= 100) {
|
719 |
-
document.getElementById('accuracy').parentElement.classList.add('pulse');
|
720 |
-
setTimeout(() => {
|
721 |
-
document.getElementById('accuracy').parentElement.classList.remove('pulse');
|
722 |
-
}, 500);
|
723 |
-
}
|
724 |
-
}
|
725 |
-
|
726 |
-
// Visualization functions
|
727 |
-
function drawNetwork() {
|
728 |
-
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
729 |
-
|
730 |
-
if (!network) return;
|
731 |
-
|
732 |
-
const layerSpacing = canvas.width / (network.layers.length + 1);
|
733 |
-
const neurons = [];
|
734 |
-
|
735 |
-
// Calculate neuron positions
|
736 |
-
for (let i = 0; i < network.layers.length; i++) {
|
737 |
-
neurons[i] = [];
|
738 |
-
const layerSize = network.layers[i];
|
739 |
-
const ySpacing = canvas.height / (layerSize + 1);
|
740 |
-
|
741 |
-
for (let j = 0; j < layerSize; j++) {
|
742 |
-
const x = layerSpacing * (i + 1);
|
743 |
-
const y = ySpacing * (j + 1);
|
744 |
-
neurons[i].push({ x, y });
|
745 |
-
}
|
746 |
-
}
|
747 |
-
|
748 |
-
// Draw connections
|
749 |
-
for (let i = 0; i < network.weights.length; i++) {
|
750 |
-
for (let j = 0; j < network.weights[i].length; j++) {
|
751 |
-
for (let k = 0; k < network.weights[i][j].length; k++) {
|
752 |
-
const weight = network.weights[i][j][k];
|
753 |
-
const opacity = Math.min(Math.abs(weight) / 2, 1);
|
754 |
-
|
755 |
-
ctx.beginPath();
|
756 |
-
ctx.moveTo(neurons[i][k].x, neurons[i][k].y);
|
757 |
-
ctx.lineTo(neurons[i+1][j].x, neurons[i+1][j].y);
|
758 |
-
|
759 |
-
if (weight > 0) {
|
760 |
-
ctx.strokeStyle = `rgba(76, 175, 80, ${opacity})`;
|
761 |
-
} else {
|
762 |
-
ctx.strokeStyle = `rgba(244, 67, 54, ${opacity})`;
|
763 |
-
}
|
764 |
-
|
765 |
-
ctx.lineWidth = Math.abs(weight) * 2;
|
766 |
-
ctx.stroke();
|
767 |
-
}
|
768 |
-
}
|
769 |
-
}
|
770 |
-
|
771 |
-
// Draw neurons
|
772 |
-
for (let i = 0; i < neurons.length; i++) {
|
773 |
-
for (let j = 0; j < neurons[i].length; j++) {
|
774 |
-
const neuron = neurons[i][j];
|
775 |
-
|
776 |
-
// Get activation value
|
777 |
-
let activation = 0;
|
778 |
-
if (network.activations[i] && network.activations[i][j] !== undefined) {
|
779 |
-
activation = network.activations[i][j];
|
780 |
-
}
|
781 |
-
|
782 |
-
const intensity = Math.min(activation * 255, 255);
|
783 |
-
|
784 |
-
ctx.beginPath();
|
785 |
-
ctx.arc(neuron.x, neuron.y, 15, 0, Math.PI * 2);
|
786 |
-
ctx.fillStyle = `rgb(${intensity}, ${intensity}, ${255})`;
|
787 |
-
ctx.fill();
|
788 |
-
ctx.strokeStyle = '#4CAF50';
|
789 |
-
ctx.lineWidth = 2;
|
790 |
-
ctx.stroke();
|
791 |
-
|
792 |
-
// Draw activation value for visible neurons
|
793 |
-
if (network.layers[i] <= 5 || i === 0 || i === network.layers.length - 1) {
|
794 |
-
ctx.fillStyle = '#fff';
|
795 |
-
ctx.font = '10px Arial';
|
796 |
-
ctx.textAlign = 'center';
|
797 |
-
ctx.textBaseline = 'middle';
|
798 |
-
ctx.fillText(activation.toFixed(2), neuron.x, neuron.y);
|
799 |
-
}
|
800 |
-
}
|
801 |
-
}
|
802 |
-
|
803 |
-
// Draw layer labels
|
804 |
-
ctx.fillStyle = '#888';
|
805 |
-
ctx.font = '14px Arial';
|
806 |
-
ctx.textAlign = 'center';
|
807 |
-
|
808 |
-
const labels = ['Input', 'Hidden 1', 'Hidden 2', 'Output'];
|
809 |
-
for (let i = 0; i < network.layers.length; i++) {
|
810 |
-
const x = layerSpacing * (i + 1);
|
811 |
-
ctx.fillText(labels[i], x, 30);
|
812 |
-
ctx.fillText(`(${network.layers[i]} neurons)`, x, 45);
|
813 |
-
}
|
814 |
-
|
815 |
-
// Draw XOR truth table
|
816 |
-
ctx.fillStyle = '#4CAF50';
|
817 |
-
ctx.font = '12px Arial';
|
818 |
-
ctx.textAlign = 'left';
|
819 |
-
ctx.fillText('XOR Truth Table:', 20, canvas.height - 80);
|
820 |
-
ctx.fillStyle = '#888';
|
821 |
-
ctx.fillText('0 XOR 0 = 0', 20, canvas.height - 60);
|
822 |
-
ctx.fillText('0 XOR 1 = 1', 20, canvas.height - 45);
|
823 |
-
ctx.fillText('1 XOR 0 = 1', 20, canvas.height - 30);
|
824 |
-
ctx.fillText('1 XOR 1 = 0', 20, canvas.height - 15);
|
825 |
-
|
826 |
-
// Show current predictions
|
827 |
-
if (network) {
|
828 |
-
ctx.fillStyle = '#4CAF50';
|
829 |
-
ctx.fillText('Network Output:', 150, canvas.height - 80);
|
830 |
-
ctx.fillStyle = '#888';
|
831 |
-
for (let i = 0; i < xorInputs.length; i++) {
|
832 |
-
const prediction = network.predict(xorInputs[i]);
|
833 |
-
const text = `${xorInputs[i][0]} XOR ${xorInputs[i][1]} = ${prediction.toFixed(3)}`;
|
834 |
-
ctx.fillText(text, 150, canvas.height - 60 + i * 15);
|
835 |
-
}
|
836 |
-
}
|
837 |
-
}
|
838 |
-
|
839 |
-
function drawLossChart() {
|
840 |
-
lossCtx.clearRect(0, 0, lossCanvas.width, lossCanvas.height);
|
841 |
-
|
842 |
-
if (lossHistory.length < 2) return;
|
843 |
-
|
844 |
-
// Find min and max for scaling
|
845 |
-
const maxLoss = Math.max(...lossHistory, 0.5);
|
846 |
-
const minLoss = 0;
|
847 |
-
|
848 |
-
// Draw axes
|
849 |
-
lossCtx.strokeStyle = '#444';
|
850 |
-
lossCtx.lineWidth = 1;
|
851 |
-
lossCtx.beginPath();
|
852 |
-
lossCtx.moveTo(40, 10);
|
853 |
-
lossCtx.lineTo(40, lossCanvas.height - 30);
|
854 |
-
lossCtx.lineTo(lossCanvas.width - 10, lossCanvas.height - 30);
|
855 |
-
lossCtx.stroke();
|
856 |
-
|
857 |
-
// Draw labels
|
858 |
-
lossCtx.fillStyle = '#888';
|
859 |
-
lossCtx.font = '12px Arial';
|
860 |
-
lossCtx.textAlign = 'right';
|
861 |
-
lossCtx.fillText(maxLoss.toFixed(3), 35, 15);
|
862 |
-
lossCtx.fillText('0', 35, lossCanvas.height - 30);
|
863 |
-
lossCtx.textAlign = 'center';
|
864 |
-
lossCtx.fillText('Loss over Time', lossCanvas.width / 2, lossCanvas.height - 10);
|
865 |
-
|
866 |
-
// Draw loss curve
|
867 |
-
lossCtx.strokeStyle = '#4CAF50';
|
868 |
-
lossCtx.lineWidth = 2;
|
869 |
-
lossCtx.beginPath();
|
870 |
-
|
871 |
-
const xStep = (lossCanvas.width - 50) / (lossHistory.length - 1);
|
872 |
-
const yScale = (lossCanvas.height - 50) / (maxLoss - minLoss);
|
873 |
-
|
874 |
-
for (let i = 0; i < lossHistory.length; i++) {
|
875 |
-
const x = 40 + i * xStep;
|
876 |
-
const y = lossCanvas.height - 30 - (lossHistory[i] - minLoss) * yScale;
|
877 |
-
|
878 |
-
if (i === 0) {
|
879 |
-
lossCtx.moveTo(x, y);
|
880 |
-
} else {
|
881 |
-
lossCtx.lineTo(x, y);
|
882 |
-
}
|
883 |
-
}
|
884 |
-
|
885 |
-
lossCtx.stroke();
|
886 |
-
|
887 |
-
// Draw current loss point
|
888 |
-
if (lossHistory.length > 0) {
|
889 |
-
const lastX = 40 + (lossHistory.length - 1) * xStep;
|
890 |
-
const lastY = lossCanvas.height - 30 - (lossHistory[lossHistory.length - 1] - minLoss) * yScale;
|
891 |
-
|
892 |
-
lossCtx.beginPath();
|
893 |
-
lossCtx.arc(lastX, lastY, 4, 0, Math.PI * 2);
|
894 |
-
lossCtx.fillStyle = '#4CAF50';
|
895 |
-
lossCtx.fill();
|
896 |
-
}
|
897 |
-
}
|
898 |
-
|
899 |
-
// Initialize
|
900 |
-
resetNetwork();
|
901 |
-
</script>
|
902 |
-
</body>
|
903 |
-
</html>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|