Spaces:
Running
Running
Update index.html
Browse files- index.html +844 -0
index.html
CHANGED
@@ -0,0 +1,844 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
<!DOCTYPE html>
|
2 |
+
<html lang="en">
|
3 |
+
<head>
|
4 |
+
<meta charset="UTF-8">
|
5 |
+
<meta name="viewport" content="width=device-width, initial-scale=1.0">
|
6 |
+
<title>AI Explainer: How Neural Networks Work</title>
|
7 |
+
<style>
|
8 |
+
* {
|
9 |
+
margin: 0;
|
10 |
+
padding: 0;
|
11 |
+
box-sizing: border-box;
|
12 |
+
}
|
13 |
+
body {
|
14 |
+
font-family: -apple-system, BlinkMacSystemFont, 'Segoe UI', Roboto, sans-serif;
|
15 |
+
background: #0a0a0a;
|
16 |
+
color: #e0e0e0;
|
17 |
+
line-height: 1.6;
|
18 |
+
overflow-x: hidden;
|
19 |
+
}
|
20 |
+
.container {
|
21 |
+
max-width: 1200px;
|
22 |
+
margin: 0 auto;
|
23 |
+
padding: 20px;
|
24 |
+
}
|
25 |
+
header {
|
26 |
+
text-align: center;
|
27 |
+
padding: 40px 20px;
|
28 |
+
background: linear-gradient(135deg, #1e3c72 0%, #2a5298 100%);
|
29 |
+
margin-bottom: 40px;
|
30 |
+
border-radius: 20px;
|
31 |
+
}
|
32 |
+
h1 {
|
33 |
+
font-size: clamp(2rem, 5vw, 3rem);
|
34 |
+
margin-bottom: 10px;
|
35 |
+
background: linear-gradient(135deg, #fff 0%, #a8dadc 100%);
|
36 |
+
-webkit-background-clip: text;
|
37 |
+
-webkit-text-fill-color: transparent;
|
38 |
+
}
|
39 |
+
.mode-toggle {
|
40 |
+
display: flex;
|
41 |
+
justify-content: center;
|
42 |
+
gap: 20px;
|
43 |
+
margin: 30px 0;
|
44 |
+
flex-wrap: wrap;
|
45 |
+
}
|
46 |
+
.mode-btn {
|
47 |
+
padding: 12px 30px;
|
48 |
+
background: #2a5298;
|
49 |
+
color: white;
|
50 |
+
border: none;
|
51 |
+
border-radius: 50px;
|
52 |
+
cursor: pointer;
|
53 |
+
font-size: 16px;
|
54 |
+
transition: all 0.3s ease;
|
55 |
+
font-weight: 600;
|
56 |
+
}
|
57 |
+
.mode-btn.active {
|
58 |
+
background: #4CAF50;
|
59 |
+
transform: scale(1.05);
|
60 |
+
}
|
61 |
+
.mode-btn:hover {
|
62 |
+
transform: translateY(-2px);
|
63 |
+
box-shadow: 0 5px 15px rgba(74, 144, 226, 0.3);
|
64 |
+
}
|
65 |
+
.section {
|
66 |
+
background: #1a1a1a;
|
67 |
+
padding: 30px;
|
68 |
+
margin-bottom: 30px;
|
69 |
+
border-radius: 20px;
|
70 |
+
box-shadow: 0 10px 30px rgba(0, 0, 0, 0.5);
|
71 |
+
}
|
72 |
+
.section h2 {
|
73 |
+
color: #4CAF50;
|
74 |
+
margin-bottom: 20px;
|
75 |
+
font-size: clamp(1.5rem, 4vw, 2rem);
|
76 |
+
}
|
77 |
+
.section h3 {
|
78 |
+
color: #81C784;
|
79 |
+
margin: 20px 0 10px 0;
|
80 |
+
font-size: clamp(1.2rem, 3vw, 1.5rem);
|
81 |
+
}
|
82 |
+
.math-content {
|
83 |
+
background: #0d0d0d;
|
84 |
+
padding: 20px;
|
85 |
+
border-radius: 10px;
|
86 |
+
overflow-x: auto;
|
87 |
+
margin: 15px 0;
|
88 |
+
border: 1px solid #333;
|
89 |
+
}
|
90 |
+
.learn-content {
|
91 |
+
background: #1e3c72;
|
92 |
+
padding: 20px;
|
93 |
+
border-radius: 10px;
|
94 |
+
margin: 15px 0;
|
95 |
+
line-height: 1.8;
|
96 |
+
}
|
97 |
+
#xor-demo {
|
98 |
+
background: #0d0d0d;
|
99 |
+
padding: 20px;
|
100 |
+
border-radius: 15px;
|
101 |
+
margin: 20px 0;
|
102 |
+
}
|
103 |
+
#network-canvas {
|
104 |
+
width: 100%;
|
105 |
+
max-width: 800px;
|
106 |
+
height: 400px;
|
107 |
+
background: #000;
|
108 |
+
border-radius: 10px;
|
109 |
+
margin: 20px auto;
|
110 |
+
display: block;
|
111 |
+
}
|
112 |
+
.controls {
|
113 |
+
display: flex;
|
114 |
+
gap: 15px;
|
115 |
+
justify-content: center;
|
116 |
+
flex-wrap: wrap;
|
117 |
+
margin: 20px 0;
|
118 |
+
}
|
119 |
+
.control-btn {
|
120 |
+
padding: 10px 25px;
|
121 |
+
background: #4CAF50;
|
122 |
+
color: white;
|
123 |
+
border: none;
|
124 |
+
border-radius: 5px;
|
125 |
+
cursor: pointer;
|
126 |
+
font-size: 16px;
|
127 |
+
transition: all 0.3s ease;
|
128 |
+
}
|
129 |
+
.control-btn:hover {
|
130 |
+
background: #45a049;
|
131 |
+
transform: translateY(-2px);
|
132 |
+
}
|
133 |
+
.control-btn:disabled {
|
134 |
+
background: #666;
|
135 |
+
cursor: not-allowed;
|
136 |
+
}
|
137 |
+
.stats {
|
138 |
+
display: grid;
|
139 |
+
grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));
|
140 |
+
gap: 15px;
|
141 |
+
margin: 20px 0;
|
142 |
+
}
|
143 |
+
.stat-box {
|
144 |
+
background: #1a1a1a;
|
145 |
+
padding: 15px;
|
146 |
+
border-radius: 10px;
|
147 |
+
text-align: center;
|
148 |
+
border: 1px solid #333;
|
149 |
+
}
|
150 |
+
.stat-label {
|
151 |
+
color: #888;
|
152 |
+
font-size: 14px;
|
153 |
+
}
|
154 |
+
.stat-value {
|
155 |
+
color: #4CAF50;
|
156 |
+
font-size: 24px;
|
157 |
+
font-weight: bold;
|
158 |
+
margin-top: 5px;
|
159 |
+
}
|
160 |
+
.loss-chart {
|
161 |
+
width: 100%;
|
162 |
+
height: 200px;
|
163 |
+
background: #000;
|
164 |
+
border-radius: 10px;
|
165 |
+
margin: 20px 0;
|
166 |
+
}
|
167 |
+
.formula {
|
168 |
+
font-family: 'Courier New', monospace;
|
169 |
+
color: #64B5F6;
|
170 |
+
padding: 10px;
|
171 |
+
background: rgba(0, 0, 0, 0.5);
|
172 |
+
border-radius: 5px;
|
173 |
+
overflow-x: auto;
|
174 |
+
white-space: nowrap;
|
175 |
+
margin: 10px 0;
|
176 |
+
}
|
177 |
+
.highlight {
|
178 |
+
background: #4CAF50;
|
179 |
+
color: #000;
|
180 |
+
padding: 2px 6px;
|
181 |
+
border-radius: 3px;
|
182 |
+
font-weight: bold;
|
183 |
+
}
|
184 |
+
@media (max-width: 768px) {
|
185 |
+
.container {
|
186 |
+
padding: 10px;
|
187 |
+
}
|
188 |
+
|
189 |
+
.section {
|
190 |
+
padding: 20px;
|
191 |
+
}
|
192 |
+
|
193 |
+
#network-canvas {
|
194 |
+
height: 300px;
|
195 |
+
}
|
196 |
+
|
197 |
+
.controls {
|
198 |
+
gap: 10px;
|
199 |
+
}
|
200 |
+
|
201 |
+
.control-btn {
|
202 |
+
padding: 8px 20px;
|
203 |
+
font-size: 14px;
|
204 |
+
}
|
205 |
+
}
|
206 |
+
.mode-content {
|
207 |
+
display: none;
|
208 |
+
}
|
209 |
+
.mode-content.active {
|
210 |
+
display: block;
|
211 |
+
}
|
212 |
+
.animated-number {
|
213 |
+
transition: all 0.3s ease;
|
214 |
+
}
|
215 |
+
@keyframes pulse {
|
216 |
+
0% { transform: scale(1); }
|
217 |
+
50% { transform: scale(1.1); }
|
218 |
+
100% { transform: scale(1); }
|
219 |
+
}
|
220 |
+
.pulse {
|
221 |
+
animation: pulse 0.5s ease;
|
222 |
+
}
|
223 |
+
</style>
|
224 |
+
</head>
|
225 |
+
<body>
|
226 |
+
<div class="container">
|
227 |
+
<header>
|
228 |
+
<h1>🧠 How AI Really Works</h1>
|
229 |
+
<p>An Interactive Journey Inside Neural Networks</p>
|
230 |
+
</header>
|
231 |
+
|
232 |
+
<div class="mode-toggle">
|
233 |
+
<button class="mode-btn active" onclick="setMode('learn')">🎓 Learn Mode</button>
|
234 |
+
<button class="mode-btn" onclick="setMode('math')">🔢 Math Mode</button>
|
235 |
+
</div>
|
236 |
+
|
237 |
+
<div class="section">
|
238 |
+
<h2>What is a Neural Network?</h2>
|
239 |
+
|
240 |
+
<div class="mode-content learn-mode active">
|
241 |
+
<div class="learn-content">
|
242 |
+
<p>Imagine your brain is made of billions of tiny decision-makers called neurons. Each neuron:</p>
|
243 |
+
<ul style="margin: 15px 0; padding-left: 30px;">
|
244 |
+
<li>🎯 Takes in information (inputs)</li>
|
245 |
+
<li>🤔 Thinks about it (processing)</li>
|
246 |
+
<li>💡 Makes a decision (output)</li>
|
247 |
+
</ul>
|
248 |
+
<p>An AI neural network works the same way! It's like a simplified brain made of math. Let's see it in action!</p>
|
249 |
+
</div>
|
250 |
+
</div>
|
251 |
+
|
252 |
+
<div class="mode-content math-mode">
|
253 |
+
<div class="math-content">
|
254 |
+
<p>A neural network is a function approximator that transforms inputs through layers of neurons:</p>
|
255 |
+
<div class="formula">
|
256 |
+
f(x) = σ(W₃ · σ(W₂ · σ(W₁ · x + b₁) + b₂) + b₃)
|
257 |
+
</div>
|
258 |
+
<p>Where:</p>
|
259 |
+
<ul style="margin: 15px 0; padding-left: 30px;">
|
260 |
+
<li>x = input vector</li>
|
261 |
+
<li>Wᵢ = weight matrix for layer i</li>
|
262 |
+
<li>bᵢ = bias vector for layer i</li>
|
263 |
+
<li>σ = activation function (e.g., ReLU, sigmoid)</li>
|
264 |
+
</ul>
|
265 |
+
</div>
|
266 |
+
</div>
|
267 |
+
</div>
|
268 |
+
|
269 |
+
<div class="section">
|
270 |
+
<h2>🎮 Live XOR Training Demo</h2>
|
271 |
+
<p>Watch an AI learn the XOR problem in real-time! XOR outputs 1 when inputs are different, 0 when same.</p>
|
272 |
+
|
273 |
+
<div id="xor-demo">
|
274 |
+
<canvas id="network-canvas"></canvas>
|
275 |
+
|
276 |
+
<div class="controls">
|
277 |
+
<button class="control-btn" onclick="startTraining()">▶️ Start Training</button>
|
278 |
+
<button class="control-btn" onclick="pauseTraining()">⏸️ Pause</button>
|
279 |
+
<button class="control-btn" onclick="resetNetwork()">🔄 Reset</button>
|
280 |
+
<button class="control-btn" onclick="stepTraining()">⏭️ Step</button>
|
281 |
+
</div>
|
282 |
+
|
283 |
+
<div class="stats">
|
284 |
+
<div class="stat-box">
|
285 |
+
<div class="stat-label">Epoch</div>
|
286 |
+
<div class="stat-value animated-number" id="epoch">0</div>
|
287 |
+
</div>
|
288 |
+
<div class="stat-box">
|
289 |
+
<div class="stat-label">Loss</div>
|
290 |
+
<div class="stat-value animated-number" id="loss">1.000</div>
|
291 |
+
</div>
|
292 |
+
<div class="stat-box">
|
293 |
+
<div class="stat-label">Accuracy</div>
|
294 |
+
<div class="stat-value animated-number" id="accuracy">0%</div>
|
295 |
+
</div>
|
296 |
+
<div class="stat-box">
|
297 |
+
<div class="stat-label">Learning Rate</div>
|
298 |
+
<div class="stat-value" id="learning-rate">0.1</div>
|
299 |
+
</div>
|
300 |
+
</div>
|
301 |
+
|
302 |
+
<canvas id="loss-chart" class="loss-chart"></canvas>
|
303 |
+
</div>
|
304 |
+
</div>
|
305 |
+
|
306 |
+
<div class="section">
|
307 |
+
<h2>How Does Learning Work?</h2>
|
308 |
+
|
309 |
+
<div class="mode-content learn-mode active">
|
310 |
+
<h3>🎯 Forward Pass: Making Predictions</h3>
|
311 |
+
<div class="learn-content">
|
312 |
+
<p>The network makes a prediction by passing data forward through each layer:</p>
|
313 |
+
<ol style="margin: 15px 0; padding-left: 30px;">
|
314 |
+
<li><span class="highlight">Input</span>: Feed in the data (like 0,1 for XOR)</li>
|
315 |
+
<li><span class="highlight">Multiply & Add</span>: Each connection has a "strength" (weight)</li>
|
316 |
+
<li><span class="highlight">Activate</span>: Decide if the neuron should "fire"</li>
|
317 |
+
<li><span class="highlight">Output</span>: Get the final prediction</li>
|
318 |
+
</ol>
|
319 |
+
</div>
|
320 |
+
|
321 |
+
<h3>📉 Backward Pass: Learning from Mistakes</h3>
|
322 |
+
<div class="learn-content">
|
323 |
+
<p>When the network is wrong, it learns by adjusting its connections:</p>
|
324 |
+
<ol style="margin: 15px 0; padding-left: 30px;">
|
325 |
+
<li><span class="highlight">Calculate Error</span>: How wrong was the prediction?</li>
|
326 |
+
<li><span class="highlight">Blame Game</span>: Which connections caused the error?</li>
|
327 |
+
<li><span class="highlight">Adjust Weights</span>: Make connections stronger or weaker</li>
|
328 |
+
<li><span class="highlight">Repeat</span>: Try again with new weights!</li>
|
329 |
+
</ol>
|
330 |
+
</div>
|
331 |
+
</div>
|
332 |
+
|
333 |
+
<div class="mode-content math-mode">
|
334 |
+
<h3>Forward Propagation</h3>
|
335 |
+
<div class="math-content">
|
336 |
+
<p>For each layer l:</p>
|
337 |
+
<div class="formula">
|
338 |
+
z[l] = W[l] · a[l-1] + b[l]
|
339 |
+
</div>
|
340 |
+
<div class="formula">
|
341 |
+
a[l] = σ(z[l])
|
342 |
+
</div>
|
343 |
+
<p>Where a[0] = x (input) and a[L] = ŷ (output)</p>
|
344 |
+
</div>
|
345 |
+
|
346 |
+
<h3>Backpropagation</h3>
|
347 |
+
<div class="math-content">
|
348 |
+
<p>Loss function (Mean Squared Error):</p>
|
349 |
+
<div class="formula">
|
350 |
+
L = ½ Σ(y - ŷ)²
|
351 |
+
</div>
|
352 |
+
<p>Gradient computation:</p>
|
353 |
+
<div class="formula">
|
354 |
+
δ[L] = ∇ₐL ⊙ σ'(z[L])
|
355 |
+
</div>
|
356 |
+
<div class="formula">
|
357 |
+
δ[l] = (W[l+1]ᵀ · δ[l+1]) ⊙ σ'(z[l])
|
358 |
+
</div>
|
359 |
+
<p>Weight update:</p>
|
360 |
+
<div class="formula">
|
361 |
+
W[l] = W[l] - α · δ[l] · a[l-1]ᵀ
|
362 |
+
</div>
|
363 |
+
<div class="formula">
|
364 |
+
b[l] = b[l] - α · δ[l]
|
365 |
+
</div>
|
366 |
+
</div>
|
367 |
+
</div>
|
368 |
+
</div>
|
369 |
+
|
370 |
+
<div class="section">
|
371 |
+
<h2>Key Components Explained</h2>
|
372 |
+
|
373 |
+
<div class="mode-content learn-mode active">
|
374 |
+
<h3>🔗 Weights & Biases</h3>
|
375 |
+
<div class="learn-content">
|
376 |
+
<p><span class="highlight">Weights</span> are like volume knobs - they control how much each input matters.</p>
|
377 |
+
<p><span class="highlight">Biases</span> are like thresholds - they decide when a neuron should activate.</p>
|
378 |
+
</div>
|
379 |
+
|
380 |
+
<h3>⚡ Activation Functions</h3>
|
381 |
+
<div class="learn-content">
|
382 |
+
<p>These decide if a neuron should "fire" or not:</p>
|
383 |
+
<ul style="margin: 15px 0; padding-left: 30px;">
|
384 |
+
<li><span class="highlight">ReLU</span>: If positive, pass it on. If negative, block it!</li>
|
385 |
+
<li><span class="highlight">Sigmoid</span>: Squash everything between 0 and 1</li>
|
386 |
+
<li><span class="highlight">Tanh</span>: Squash everything between -1 and 1</li>
|
387 |
+
</ul>
|
388 |
+
</div>
|
389 |
+
|
390 |
+
<h3>🎯 Gradient Descent</h3>
|
391 |
+
<div class="learn-content">
|
392 |
+
<p>Imagine you're blindfolded on a hill, trying to reach the bottom:</p>
|
393 |
+
<ol style="margin: 15px 0; padding-left: 30px;">
|
394 |
+
<li>Feel the slope around you (calculate gradient)</li>
|
395 |
+
<li>Take a small step downhill (adjust weights)</li>
|
396 |
+
<li>Repeat until you reach the bottom (minimum loss)</li>
|
397 |
+
</ol>
|
398 |
+
</div>
|
399 |
+
</div>
|
400 |
+
|
401 |
+
<div class="mode-content math-mode">
|
402 |
+
<h3>Activation Functions</h3>
|
403 |
+
<div class="math-content">
|
404 |
+
<p><strong>ReLU:</strong></p>
|
405 |
+
<div class="formula">
|
406 |
+
f(x) = max(0, x)
|
407 |
+
</div>
|
408 |
+
<div class="formula">
|
409 |
+
f'(x) = {1 if x > 0, 0 if x ≤ 0}
|
410 |
+
</div>
|
411 |
+
|
412 |
+
<p><strong>Sigmoid:</strong></p>
|
413 |
+
<div class="formula">
|
414 |
+
σ(x) = 1 / (1 + e⁻ˣ)
|
415 |
+
</div>
|
416 |
+
<div class="formula">
|
417 |
+
σ'(x) = σ(x) · (1 - σ(x))
|
418 |
+
</div>
|
419 |
+
|
420 |
+
<p><strong>Tanh:</strong></p>
|
421 |
+
<div class="formula">
|
422 |
+
tanh(x) = (eˣ - e⁻ˣ) / (eˣ + e⁻ˣ)
|
423 |
+
</div>
|
424 |
+
<div class="formula">
|
425 |
+
tanh'(x) = 1 - tanh²(x)
|
426 |
+
</div>
|
427 |
+
</div>
|
428 |
+
|
429 |
+
<h3>Gradient Descent Update Rule</h3>
|
430 |
+
<div class="math-content">
|
431 |
+
<div class="formula">
|
432 |
+
θₜ₊₁ = θₜ - α · ∇θ L(θₜ)
|
433 |
+
</div>
|
434 |
+
<p>Where:</p>
|
435 |
+
<ul style="margin: 15px 0; padding-left: 30px;">
|
436 |
+
<li>θ = parameters (weights and biases)</li>
|
437 |
+
<li>α = learning rate</li>
|
438 |
+
<li>∇θ L = gradient of loss with respect to parameters</li>
|
439 |
+
</ul>
|
440 |
+
</div>
|
441 |
+
</div>
|
442 |
+
</div>
|
443 |
+
</div>
|
444 |
+
|
445 |
+
<script>
|
446 |
+
// Global variables
|
447 |
+
let mode = 'learn';
|
448 |
+
let network = null;
|
449 |
+
let training = false;
|
450 |
+
let epoch = 0;
|
451 |
+
let lossHistory = [];
|
452 |
+
const canvas = document.getElementById('network-canvas');
|
453 |
+
const ctx = canvas.getContext('2d');
|
454 |
+
const lossCanvas = document.getElementById('loss-chart');
|
455 |
+
const lossCtx = lossCanvas.getContext('2d');
|
456 |
+
// Set canvas sizes
|
457 |
+
function resizeCanvases() {
|
458 |
+
canvas.width = canvas.offsetWidth;
|
459 |
+
canvas.height = canvas.offsetHeight;
|
460 |
+
lossCanvas.width = lossCanvas.offsetWidth;
|
461 |
+
lossCanvas.height = lossCanvas.offsetHeight;
|
462 |
+
}
|
463 |
+
resizeCanvases();
|
464 |
+
window.addEventListener('resize', resizeCanvases);
|
465 |
+
// Mode switching
|
466 |
+
function setMode(newMode) {
|
467 |
+
mode = newMode;
|
468 |
+
document.querySelectorAll('.mode-btn').forEach(btn => {
|
469 |
+
btn.classList.toggle('active', btn.textContent.toLowerCase().includes(newMode));
|
470 |
+
});
|
471 |
+
document.querySelectorAll('.mode-content').forEach(content => {
|
472 |
+
content.classList.toggle('active', content.classList.contains(`${newMode}-mode`));
|
473 |
+
});
|
474 |
+
}
|
475 |
+
// Neural Network Class
|
476 |
+
class NeuralNetwork {
|
477 |
+
constructor() {
|
478 |
+
// Network architecture: 2-25-25-1 (roughly 100 parameters)
|
479 |
+
this.layers = [2, 25, 25, 1];
|
480 |
+
this.weights = [];
|
481 |
+
this.biases = [];
|
482 |
+
this.activations = [];
|
483 |
+
this.zValues = [];
|
484 |
+
this.gradients = [];
|
485 |
+
this.learningRate = 0.1;
|
486 |
+
|
487 |
+
this.initializeNetwork();
|
488 |
+
}
|
489 |
+
initializeNetwork() {
|
490 |
+
// Xavier initialization
|
491 |
+
for (let i = 1; i < this.layers.length; i++) {
|
492 |
+
const rows = this.layers[i];
|
493 |
+
const cols = this.layers[i-1];
|
494 |
+
const scale = Math.sqrt(2.0 / cols);
|
495 |
+
|
496 |
+
// Initialize weights
|
497 |
+
this.weights[i-1] = [];
|
498 |
+
for (let r = 0; r < rows; r++) {
|
499 |
+
this.weights[i-1][r] = [];
|
500 |
+
for (let c = 0; c < cols; c++) {
|
501 |
+
this.weights[i-1][r][c] = (Math.random() * 2 - 1) * scale;
|
502 |
+
}
|
503 |
+
}
|
504 |
+
|
505 |
+
// Initialize biases
|
506 |
+
this.biases[i-1] = new Array(rows).fill(0);
|
507 |
+
}
|
508 |
+
}
|
509 |
+
sigmoid(x) {
|
510 |
+
return 1 / (1 + Math.exp(-x));
|
511 |
+
}
|
512 |
+
sigmoidDerivative(x) {
|
513 |
+
const s = this.sigmoid(x);
|
514 |
+
return s * (1 - s);
|
515 |
+
}
|
516 |
+
relu(x) {
|
517 |
+
return Math.max(0, x);
|
518 |
+
}
|
519 |
+
reluDerivative(x) {
|
520 |
+
return x > 0 ? 1 : 0;
|
521 |
+
}
|
522 |
+
forward(input) {
|
523 |
+
this.activations = [input];
|
524 |
+
this.zValues = [];
|
525 |
+
for (let i = 0; i < this.weights.length; i++) {
|
526 |
+
const z = [];
|
527 |
+
const a = [];
|
528 |
+
|
529 |
+
for (let j = 0; j < this.weights[i].length; j++) {
|
530 |
+
let sum = this.biases[i][j];
|
531 |
+
for (let k = 0; k < this.weights[i][j].length; k++) {
|
532 |
+
sum += this.weights[i][j][k] * this.activations[i][k];
|
533 |
+
}
|
534 |
+
z.push(sum);
|
535 |
+
|
536 |
+
// Use ReLU for hidden layers, sigmoid for output
|
537 |
+
if (i < this.weights.length - 1) {
|
538 |
+
a.push(this.relu(sum));
|
539 |
+
} else {
|
540 |
+
a.push(this.sigmoid(sum));
|
541 |
+
}
|
542 |
+
}
|
543 |
+
|
544 |
+
this.zValues.push(z);
|
545 |
+
this.activations.push(a);
|
546 |
+
}
|
547 |
+
return this.activations[this.activations.length - 1][0];
|
548 |
+
}
|
549 |
+
backward(input, target) {
|
550 |
+
const output = this.forward(input);
|
551 |
+
const error = output - target;
|
552 |
+
|
553 |
+
// Initialize gradients
|
554 |
+
this.gradients = [];
|
555 |
+
|
556 |
+
// Output layer gradients
|
557 |
+
let delta = [error * this.sigmoidDerivative(this.zValues[this.zValues.length - 1][0])];
|
558 |
+
this.gradients.unshift(delta);
|
559 |
+
|
560 |
+
// Hidden layer gradients
|
561 |
+
for (let i = this.weights.length - 2; i >= 0; i--) {
|
562 |
+
const newDelta = [];
|
563 |
+
for (let j = 0; j < this.weights[i].length; j++) {
|
564 |
+
let sum = 0;
|
565 |
+
for (let k = 0; k < delta.length; k++) {
|
566 |
+
sum += this.weights[i+1][k][j] * delta[k];
|
567 |
+
}
|
568 |
+
const activation = i > 0 ?
|
569 |
+
this.reluDerivative(this.zValues[i][j]) :
|
570 |
+
this.reluDerivative(this.zValues[i][j]);
|
571 |
+
newDelta.push(sum * activation);
|
572 |
+
}
|
573 |
+
delta = newDelta;
|
574 |
+
this.gradients.unshift(delta);
|
575 |
+
}
|
576 |
+
// Update weights and biases
|
577 |
+
for (let i = 0; i < this.weights.length; i++) {
|
578 |
+
for (let j = 0; j < this.weights[i].length; j++) {
|
579 |
+
for (let k = 0; k < this.weights[i][j].length; k++) {
|
580 |
+
this.weights[i][j][k] -= this.learningRate * this.gradients[i][j] * this.activations[i][k];
|
581 |
+
}
|
582 |
+
this.biases[i][j] -= this.learningRate * this.gradients[i][j];
|
583 |
+
}
|
584 |
+
}
|
585 |
+
return error * error;
|
586 |
+
}
|
587 |
+
train(inputs, targets) {
|
588 |
+
let totalLoss = 0;
|
589 |
+
for (let i = 0; i < inputs.length; i++) {
|
590 |
+
totalLoss += this.backward(inputs[i], targets[i]);
|
591 |
+
}
|
592 |
+
return totalLoss / inputs.length;
|
593 |
+
}
|
594 |
+
predict(input) {
|
595 |
+
return this.forward(input);
|
596 |
+
}
|
597 |
+
}
|
598 |
+
// XOR training data
|
599 |
+
const xorInputs = [[0, 0], [0, 1], [1, 0], [1, 1]];
|
600 |
+
const xorTargets = [0, 1, 1, 0];
|
601 |
+
// Initialize network
|
602 |
+
function resetNetwork() {
|
603 |
+
network = new NeuralNetwork();
|
604 |
+
epoch = 0;
|
605 |
+
lossHistory = [];
|
606 |
+
training = false;
|
607 |
+
updateStats();
|
608 |
+
drawNetwork();
|
609 |
+
drawLossChart();
|
610 |
+
}
|
611 |
+
// Training functions
|
612 |
+
function startTraining() {
|
613 |
+
training = true;
|
614 |
+
trainLoop();
|
615 |
+
}
|
616 |
+
function pauseTraining() {
|
617 |
+
training = false;
|
618 |
+
}
|
619 |
+
function stepTraining() {
|
620 |
+
if (!network) resetNetwork();
|
621 |
+
trainStep();
|
622 |
+
}
|
623 |
+
function trainStep() {
|
624 |
+
const loss = network.train(xorInputs, xorTargets);
|
625 |
+
epoch++;
|
626 |
+
lossHistory.push(loss);
|
627 |
+
if (lossHistory.length > 100) lossHistory.shift();
|
628 |
+
|
629 |
+
updateStats();
|
630 |
+
drawNetwork();
|
631 |
+
drawLossChart();
|
632 |
+
}
|
633 |
+
function trainLoop() {
|
634 |
+
if (!training) return;
|
635 |
+
|
636 |
+
trainStep();
|
637 |
+
|
638 |
+
if (epoch < 1000 && lossHistory[lossHistory.length - 1] > 0.001) {
|
639 |
+
requestAnimationFrame(trainLoop);
|
640 |
+
} else {
|
641 |
+
training = false;
|
642 |
+
}
|
643 |
+
}
|
644 |
+
// Update statistics
|
645 |
+
function updateStats() {
|
646 |
+
document.getElementById('epoch').textContent = epoch;
|
647 |
+
|
648 |
+
const loss = lossHistory.length > 0 ? lossHistory[lossHistory.length - 1] : 1;
|
649 |
+
document.getElementById('loss').textContent = loss.toFixed(4);
|
650 |
+
|
651 |
+
// Calculate accuracy
|
652 |
+
let correct = 0;
|
653 |
+
for (let i = 0; i < xorInputs.length; i++) {
|
654 |
+
const prediction = network ? network.predict(xorInputs[i]) : 0.5;
|
655 |
+
const rounded = Math.round(prediction);
|
656 |
+
if (rounded === xorTargets[i]) correct++;
|
657 |
+
}
|
658 |
+
const accuracy = (correct / xorInputs.length * 100).toFixed(0);
|
659 |
+
document.getElementById('accuracy').textContent = accuracy + '%';
|
660 |
+
|
661 |
+
// Add pulse animation on high accuracy
|
662 |
+
if (accuracy >= 100) {
|
663 |
+
document.getElementById('accuracy').parentElement.classList.add('pulse');
|
664 |
+
setTimeout(() => {
|
665 |
+
document.getElementById('accuracy').parentElement.classList.remove('pulse');
|
666 |
+
}, 500);
|
667 |
+
}
|
668 |
+
}
|
669 |
+
// Visualization functions
|
670 |
+
function drawNetwork() {
|
671 |
+
ctx.clearRect(0, 0, canvas.width, canvas.height);
|
672 |
+
|
673 |
+
if (!network) return;
|
674 |
+
|
675 |
+
const layerSpacing = canvas.width / (network.layers.length + 1);
|
676 |
+
const neurons = [];
|
677 |
+
|
678 |
+
// Calculate neuron positions
|
679 |
+
for (let i = 0; i < network.layers.length; i++) {
|
680 |
+
neurons[i] = [];
|
681 |
+
const layerSize = network.layers[i];
|
682 |
+
const ySpacing = canvas.height / (layerSize + 1);
|
683 |
+
|
684 |
+
for (let j = 0; j < layerSize; j++) {
|
685 |
+
const x = layerSpacing * (i + 1);
|
686 |
+
const y = ySpacing * (j + 1);
|
687 |
+
neurons[i].push({ x, y });
|
688 |
+
}
|
689 |
+
}
|
690 |
+
|
691 |
+
// Draw connections
|
692 |
+
for (let i = 0; i < network.weights.length; i++) {
|
693 |
+
for (let j = 0; j < network.weights[i].length; j++) {
|
694 |
+
for (let k = 0; k < network.weights[i][j].length; k++) {
|
695 |
+
const weight = network.weights[i][j][k];
|
696 |
+
const opacity = Math.min(Math.abs(weight) / 2, 1);
|
697 |
+
|
698 |
+
ctx.beginPath();
|
699 |
+
ctx.moveTo(neurons[i][k].x, neurons[i][k].y);
|
700 |
+
ctx.lineTo(neurons[i+1][j].x, neurons[i+1][j].y);
|
701 |
+
|
702 |
+
if (weight > 0) {
|
703 |
+
ctx.strokeStyle = `rgba(76, 175, 80, ${opacity})`;
|
704 |
+
} else {
|
705 |
+
ctx.strokeStyle = `rgba(244, 67, 54, ${opacity})`;
|
706 |
+
}
|
707 |
+
|
708 |
+
ctx.lineWidth = Math.abs(weight) * 2;
|
709 |
+
ctx.stroke();
|
710 |
+
}
|
711 |
+
}
|
712 |
+
}
|
713 |
+
|
714 |
+
// Draw neurons
|
715 |
+
for (let i = 0; i < neurons.length; i++) {
|
716 |
+
for (let j = 0; j < neurons[i].length; j++) {
|
717 |
+
const neuron = neurons[i][j];
|
718 |
+
|
719 |
+
// Get activation value
|
720 |
+
let activation = 0;
|
721 |
+
if (network.activations[i] && network.activations[i][j] !== undefined) {
|
722 |
+
activation = network.activations[i][j];
|
723 |
+
}
|
724 |
+
|
725 |
+
const intensity = Math.min(activation * 255, 255);
|
726 |
+
|
727 |
+
ctx.beginPath();
|
728 |
+
ctx.arc(neuron.x, neuron.y, 15, 0, Math.PI * 2);
|
729 |
+
ctx.fillStyle = `rgb(${intensity}, ${intensity}, ${255})`;
|
730 |
+
ctx.fill();
|
731 |
+
ctx.strokeStyle = '#4CAF50';
|
732 |
+
ctx.lineWidth = 2;
|
733 |
+
ctx.stroke();
|
734 |
+
|
735 |
+
// Draw activation value for visible neurons
|
736 |
+
if (network.layers[i] <= 5 || i === 0 || i === network.layers.length - 1) {
|
737 |
+
ctx.fillStyle = '#fff';
|
738 |
+
ctx.font = '10px Arial';
|
739 |
+
ctx.textAlign = 'center';
|
740 |
+
ctx.textBaseline = 'middle';
|
741 |
+
ctx.fillText(activation.toFixed(2), neuron.x, neuron.y);
|
742 |
+
}
|
743 |
+
}
|
744 |
+
}
|
745 |
+
|
746 |
+
// Draw layer labels
|
747 |
+
ctx.fillStyle = '#888';
|
748 |
+
ctx.font = '14px Arial';
|
749 |
+
ctx.textAlign = 'center';
|
750 |
+
|
751 |
+
const labels = ['Input', 'Hidden 1', 'Hidden 2', 'Output'];
|
752 |
+
for (let i = 0; i < network.layers.length; i++) {
|
753 |
+
const x = layerSpacing * (i + 1);
|
754 |
+
ctx.fillText(labels[i], x, 30);
|
755 |
+
ctx.fillText(`(${network.layers[i]} neurons)`, x, 45);
|
756 |
+
}
|
757 |
+
|
758 |
+
// Draw XOR truth table
|
759 |
+
ctx.fillStyle = '#4CAF50';
|
760 |
+
ctx.font = '12px Arial';
|
761 |
+
ctx.textAlign = 'left';
|
762 |
+
ctx.fillText('XOR Truth Table:', 20, canvas.height - 80);
|
763 |
+
ctx.fillStyle = '#888';
|
764 |
+
ctx.fillText('0 XOR 0 = 0', 20, canvas.height - 60);
|
765 |
+
ctx.fillText('0 XOR 1 = 1', 20, canvas.height - 45);
|
766 |
+
ctx.fillText('1 XOR 0 = 1', 20, canvas.height - 30);
|
767 |
+
ctx.fillText('1 XOR 1 = 0', 20, canvas.height - 15);
|
768 |
+
|
769 |
+
// Show current predictions
|
770 |
+
if (network) {
|
771 |
+
ctx.fillStyle = '#4CAF50';
|
772 |
+
ctx.fillText('Network Output:', 150, canvas.height - 80);
|
773 |
+
ctx.fillStyle = '#888';
|
774 |
+
for (let i = 0; i < xorInputs.length; i++) {
|
775 |
+
const prediction = network.predict(xorInputs[i]);
|
776 |
+
const text = `${xorInputs[i][0]} XOR ${xorInputs[i][1]} = ${prediction.toFixed(3)}`;
|
777 |
+
ctx.fillText(text, 150, canvas.height - 60 + i * 15);
|
778 |
+
}
|
779 |
+
}
|
780 |
+
}
|
781 |
+
function drawLossChart() {
|
782 |
+
lossCtx.clearRect(0, 0, lossCanvas.width, lossCanvas.height);
|
783 |
+
|
784 |
+
if (lossHistory.length < 2) return;
|
785 |
+
|
786 |
+
// Find min and max for scaling
|
787 |
+
const maxLoss = Math.max(...lossHistory, 0.5);
|
788 |
+
const minLoss = 0;
|
789 |
+
|
790 |
+
// Draw axes
|
791 |
+
lossCtx.strokeStyle = '#444';
|
792 |
+
lossCtx.lineWidth = 1;
|
793 |
+
lossCtx.beginPath();
|
794 |
+
lossCtx.moveTo(40, 10);
|
795 |
+
lossCtx.lineTo(40, lossCanvas.height - 30);
|
796 |
+
lossCtx.lineTo(lossCanvas.width - 10, lossCanvas.height - 30);
|
797 |
+
lossCtx.stroke();
|
798 |
+
|
799 |
+
// Draw labels
|
800 |
+
lossCtx.fillStyle = '#888';
|
801 |
+
lossCtx.font = '12px Arial';
|
802 |
+
lossCtx.textAlign = 'right';
|
803 |
+
lossCtx.fillText(maxLoss.toFixed(3), 35, 15);
|
804 |
+
lossCtx.fillText('0', 35, lossCanvas.height - 30);
|
805 |
+
lossCtx.textAlign = 'center';
|
806 |
+
lossCtx.fillText('Loss over Time', lossCanvas.width / 2, lossCanvas.height - 10);
|
807 |
+
|
808 |
+
// Draw loss curve
|
809 |
+
lossCtx.strokeStyle = '#4CAF50';
|
810 |
+
lossCtx.lineWidth = 2;
|
811 |
+
lossCtx.beginPath();
|
812 |
+
|
813 |
+
const xStep = (lossCanvas.width - 50) / (lossHistory.length - 1);
|
814 |
+
const yScale = (lossCanvas.height - 50) / (maxLoss - minLoss);
|
815 |
+
|
816 |
+
for (let i = 0; i < lossHistory.length; i++) {
|
817 |
+
const x = 40 + i * xStep;
|
818 |
+
const y = lossCanvas.height - 30 - (lossHistory[i] - minLoss) * yScale;
|
819 |
+
|
820 |
+
if (i === 0) {
|
821 |
+
lossCtx.moveTo(x, y);
|
822 |
+
} else {
|
823 |
+
lossCtx.lineTo(x, y);
|
824 |
+
}
|
825 |
+
}
|
826 |
+
|
827 |
+
lossCtx.stroke();
|
828 |
+
|
829 |
+
// Draw current loss point
|
830 |
+
if (lossHistory.length > 0) {
|
831 |
+
const lastX = 40 + (lossHistory.length - 1) * xStep;
|
832 |
+
const lastY = lossCanvas.height - 30 - (lossHistory[lossHistory.length - 1] - minLoss) * yScale;
|
833 |
+
|
834 |
+
lossCtx.beginPath();
|
835 |
+
lossCtx.arc(lastX, lastY, 4, 0, Math.PI * 2);
|
836 |
+
lossCtx.fillStyle = '#4CAF50';
|
837 |
+
lossCtx.fill();
|
838 |
+
}
|
839 |
+
}
|
840 |
+
// Initialize
|
841 |
+
resetNetwork();
|
842 |
+
</script>
|
843 |
+
</body>
|
844 |
+
</html>
|