Spaces:
Runtime error
Runtime error
File size: 1,173 Bytes
7536507 1dc4468 7536507 1dc4468 2243e25 1dc4468 2243e25 7536507 1dc4468 7536507 2243e25 7536507 1dc4468 7536507 1dc4468 7536507 2243e25 7536507 1dc4468 2243e25 7536507 2243e25 1dc4468 2243e25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 |
import os
import gradio as gr
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain, PromptTemplate
from langchain.memory import ConversationBufferMemory
# Set OpenAI API Key
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
if not OPENAI_API_KEY:
raise ValueError("OpenAI API Key is not set. Please set the 'OPENAI_API_KEY' environment variable.")
# Define the template for the assistant
template = """You are a helpful assistant to answer all user queries.
{chat_history}
User: {user_message}
Chatbot:"""
prompt = PromptTemplate(
input_variables=["chat_history", "user_message"],
template=template
)
memory = ConversationBufferMemory(memory_key="chat_history")
llm_chain = LLMChain(
llm=ChatOpenAI(temperature=0.5, model_name="gpt-3.5-turbo"),
prompt=prompt,
verbose=True,
memory=memory,
)
# Function to get response
def get_text_response(user_message, history=None):
response = llm_chain.predict(user_message=user_message)
return response
# Gradio Chat Interface
demo = gr.ChatInterface(get_text_response, type="messages")
# Launch the Gradio app
if _name_ == "_main_":
demo.launch(share=True, debug=True) |