File size: 1,173 Bytes
7536507
1dc4468
7536507
 
 
1dc4468
2243e25
 
 
 
1dc4468
2243e25
7536507
 
 
 
1dc4468
7536507
2243e25
 
7536507
1dc4468
7536507
1dc4468
7536507
2243e25
7536507
 
 
1dc4468
 
2243e25
 
 
7536507
 
2243e25
 
1dc4468
2243e25
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import os
import gradio as gr
from langchain.chat_models import ChatOpenAI
from langchain import LLMChain, PromptTemplate
from langchain.memory import ConversationBufferMemory

# Set OpenAI API Key
OPENAI_API_KEY = os.getenv('OPENAI_API_KEY')
if not OPENAI_API_KEY:
    raise ValueError("OpenAI API Key is not set. Please set the 'OPENAI_API_KEY' environment variable.")

# Define the template for the assistant
template = """You are a helpful assistant to answer all user queries.
{chat_history}
User: {user_message}
Chatbot:"""

prompt = PromptTemplate(
    input_variables=["chat_history", "user_message"],
    template=template
)

memory = ConversationBufferMemory(memory_key="chat_history")

llm_chain = LLMChain(
    llm=ChatOpenAI(temperature=0.5, model_name="gpt-3.5-turbo"),
    prompt=prompt,
    verbose=True,
    memory=memory,
)

# Function to get response
def get_text_response(user_message, history=None):
    response = llm_chain.predict(user_message=user_message)
    return response

# Gradio Chat Interface
demo = gr.ChatInterface(get_text_response, type="messages")

# Launch the Gradio app
if _name_ == "_main_":
    demo.launch(share=True, debug=True)