diff --git a/.gitattributes b/.gitattributes index a6344aac8c09253b3b630fb776ae94478aa0275b..a89c8747bfb80915afe9a10a705266e8f7bbe372 100644 --- a/.gitattributes +++ b/.gitattributes @@ -33,3 +33,24 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text *.zip filter=lfs diff=lfs merge=lfs -text *.zst filter=lfs diff=lfs merge=lfs -text *tfevents* filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/demo_images/04133.png filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/demo_images/04444.png filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/demo_images/7292.JPG filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/demo_images/church_183.png filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/demo_images/MicrosoftTeams-image.png filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/demo_images/train_2956_0001.png filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/docs/geochat_supp.pdf filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/geochat/serve/examples/11760.jpg filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/geochat/serve/examples/11765.jpg filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/architecture.png filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/dataset.png filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/examples.png filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/grounded.jpg filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/iden.jpg filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/logo_geochat.png filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/overview2.png filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/ref_2.jpg filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/ref1.jpg filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/scene.jpg filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/teaser.png filter=lfs diff=lfs merge=lfs -text +Geo/GeochatP-main/images/vqa.jpg filter=lfs diff=lfs merge=lfs -text diff --git a/Geo/GeochatP-main/.github/workflows/deploy_to_huggingface.yml b/Geo/GeochatP-main/.github/workflows/deploy_to_huggingface.yml new file mode 100644 index 0000000000000000000000000000000000000000..251546602fce5c9a84dc686431b090b7e98659ed --- /dev/null +++ b/Geo/GeochatP-main/.github/workflows/deploy_to_huggingface.yml @@ -0,0 +1,20 @@ +name: Deploy to Hugging Face + +on: + push: + branches: + - main + +jobs: + deploy: + runs-on: ubuntu-latest + steps: + - name: Checkout repository + uses: actions/checkout@v3 + + - name: Upload to Hugging Face Space + uses: huggingface/hub-action@v1 # Use v1 instead of v1.4.4 + with: + repo-id: Prince53/GeochatP # Make sure this matches your Hugging Face username and space name + repo-type: space + hf-token: ${{ secrets.HF_TOKEN }} diff --git a/Geo/GeochatP-main/README.md b/Geo/GeochatP-main/README.md new file mode 100644 index 0000000000000000000000000000000000000000..0ef84f6fa92841d37de2f35fdaa5850806d6c8ab --- /dev/null +++ b/Geo/GeochatP-main/README.md @@ -0,0 +1,227 @@ +# GeoChat : Grounded Large Vision-Language Model for Remote Sensing [CVPR-2024] +

+ Oryx Video-ChatGPT +

+ +#### [Kartik Kuckreja](https://www.linkedin.com/in/kartik-kuckreja-930531221/)\*, [Muhammad Sohail Danish](https://www.linkedin.com/in/muhammad-sohail-danish/)\*, [Muzammal Naseer](https://muzammal-naseer.com/), [Abhijit Das](https://sites.google.com/site/dasabhijit2048/home), [Salman Khan](https://salman-h-khan.github.io/) and [Fahad Khan](https://sites.google.com/view/fahadkhans/home) +\* Equally contributing first authors + +#### **Mohamed bin Zayed University of AI, Birla Institute of Technology & Science, Australian National University, Linkoping University** + +[![Website](https://img.shields.io/badge/Project-Website-87CEEB)](https://mbzuai-oryx.github.io/GeoChat) +[![paper](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2311.15826) +[![video](https://img.shields.io/badge/Video-Presentation-F9D371)](https://youtu.be/KOKtkkKpNDk) + +--- + +## 📢 Latest Updates +- Supplementary material for the accepted paper is available here: [Supplementary](https://github.com/mbzuai-oryx/GeoChat/blob/main/docs/geochat_supp.pdf). +- **Feb-28-24**: We open source the code, model, dataset, and evaluation scripts. +- **Feb-27-24**: GeoChat has been accepted to **CVPR-24** 🎉. +- **Nov-28-23**: GeoChat paper is released [arxiv link](https://arxiv.org/abs/2311.15826). 🔥🔥 +--- + + + +## Overview + +GeoChat is the first grounded Large Vision Language Model, specifically tailored to Remote Sensing(RS) scenarios. Unlike general-domain models, GeoChat excels in handling high-resolution RS imagery, employing region-level reasoning for comprehensive scene interpretation. Leveraging a newly created RS multimodal dataset, GeoChat is fine-tuned using the LLaVA-1.5 architecture. This results in robust zero-shot performance across various RS tasks, including image and region captioning, visual question answering, scene classification, visually grounded conversations, and referring object detection. + +--- +## Contents +- [Install](#install) +- [Model Zoo](https://github.com/mbzuai-oryx/GeoChat/blob/main/docs/MODEL_ZOO.md) +- [Dataset](https://huggingface.co/datasets/MBZUAI/GeoChat_Instruct/blob/main/GeoChat_Instruct.json) +- [Train](#train) +- [Evaluation](#evaluation) + +## Install + +1. Clone this repository and navigate to GeoChat folder +```bash +git clone https://github.com/mbzuai-oryx/GeoChat.git +cd GeoChat +``` + +2. Install Package +```Shell +conda create -n geochat python=3.10 -y +conda activate geochat +pip install --upgrade pip # enable PEP 660 support +pip install -e . +``` + +3. Install additional packages for training cases +``` +pip install ninja +pip install flash-attn --no-build-isolation +``` + +### Upgrade to latest code base + +```Shell +git pull +pip uninstall transformers +pip install -e . +``` + +## GeoChat Weights and Demo +Please check out our [Model Zoo](https://github.com/mbzuai-oryx/GeoChat/blob/main/docs/MODEL_ZOO.md) for all public GeoChat checkpoints, and check [LoRA.md](https://github.com/mbzuai-oryx/GeoChat/blob/main/docs/LoRA.md) for instructions on how to run the demo and training. + +## Train + +GeoChat training consists of visual instruction tuning using GeoChat_Instruct Dataset: 318k Vicuna-generated multimodal instruction-following data, finetuned over the pretrained weights of LlaVA-v1.5. + +We train GeoChat on 3 A100 GPUs with 40GB memory. To train on fewer GPUs, you can reduce the `per_device_train_batch_size` and increase the `gradient_accumulation_steps` accordingly. Always keep the global batch size the same: `per_device_train_batch_size` x `gradient_accumulation_steps` x `num_gpus`. + +### Hyperparameters +We use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below. + +| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | +| --- | ---: | ---: | ---: | ---: | ---: | +| GeoChat-7B | 144 | 2e-5 | 1 | 2048 | 0 | + +### Pretrain (feature alignment) + +We use the pretrained projector from LLaVAv1.5, which is trained on 558K subset of the LAION-CC-SBU dataset with BLIP captions. It takes around 3.5 hours for LLaVA-v1.5-7B. + +- `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector. +- `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px. + +### Visual Instruction Tuning + +1. Prepare data + +Please download the annotation of the final mixture of our instruction tuning data [GeoChat_Instruct.json](https://huggingface.co/datasets/MBZUAI/GeoChat_Instruct/blob/main/GeoChat_Instruct.json), and download the split image zips from the [hugging face](https://huggingface.co/datasets/MBZUAI/GeoChat_Instruct). Save the multiple image zips in a single folder and run the following command to merge them: +```Shell +cat images_parta* > images.zip +``` +Unzip the images.zip file to a folder and give the folder's path in [finetune_lora.sh](https://github.com/mbzuai-oryx/GeoChat/blob/main/scripts/finetune_lora.sh). + +2. Start training! + +Visual instruction tuning takes more time due to the increased resolution of CLIP to 504X504. It takes around ~25 hours to finetune GeoChat-7B on 3x A100 (40G). + +Training script with DeepSpeed ZeRO-3: [`finetune_lora.sh`](https://github.com/mbzuai-oryx/GeoChat/blob/main/scripts/finetune_lora.sh). + +Options to note: + +- `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector. +- `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px. +- `--image_aspect_ratio pad`: this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination. +- `--group_by_modality_length True`: this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). +- +## Evaluation + +We evaluate GeoChat on a diverse set of 7 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs. +See [Evaluation.md](https://github.com/mbzuai-oryx/GeoChat/blob/main/docs/Evaluation.md). + +## 🏆 Contributions + +- **RS multimodal instruction following dataset.** We present a novel data generation pipeline, to leverage existing object detection dataset to create short descriptions of the images, followed by using Vicuna-v1.5 to create conversations using the generated text alone. Further, we add visual question-answering and scene classification abilities + using their corresponding datasets. This results in a total of 318k instruction pairs for RS domain. +- **GeoChat.** Leveraging our dataset, we finetune LLaVA-1.5 to create the remote sensing-domain vision-language model - GeoChat. Our LoRA fine-tuning is efficient and avoids forgetting the necessary context embedded in fully-tuned LLaVA model, whose MLP projection is trained to align images into the word embedding space of the LLM (Vicuna-v1.5). This allows GeoChat to retain the conversation and instruction following abilities of LLaVA and extend its domain-knowledge to remote sensing tasks. + +- **Evaluation Benchmark.** We also address the lack of evaluation benchmarks to assess the capability of existing VLMs on remote-sensing conversations. To this end, we setup evaluation protocols for conversation grounding in RS, as well as a setup a suite of tasks to allow comparisons with future efforts in this direction. We show various supervised as well as zero-shot evaluations for different remote sensing tasks, including image captioning, visual question answering and scene classification to demonstrate the generalisability of GeoChat conversational VLM. + +--- +## 👁️💬 GeoChat : Grounded Large Vision-Language Model for Remote Sensing + +GeoChat can accomplish multiple tasks for remote-sensing (RS) image comprehension in a unified framework. Given suitable task tokens and user queries, the model can generate visually grounded responses (text with corresponding object locations - shown on top), visual question answering on images and regions (top left and bottom right, respectively) as well as scene classification (top right) and normal natural language conversations (bottom). This makes it the first RS VLM with grounding capability. + +

+ GeoChat Overview +

+ +--- + +## 🛰️ GeoChat : Architecture + +An overview of GeoChat - the first grounded large vision-language model for remote sensing. Given an image input together with a user query, a visual backbone is first used to encode patch-level tokens at a higher resolution via interpolating positional encodings. A multi-layer perceptron (MLP) is used to adapt vision-tokens to language space suitable for input to a Large Language Model (Vicuna 1.5). Besides visual inputs, region locations can also be input to the model together with task-specific prompts that specify the desired task required by the user. Given this context, the LLM can generate natural language responses interleaved with corresponding object locations. GeoChat can perform multiple tasks as shown on top e.g., scene classification, image/region captioning, VQA and grounded conversations. + +

+ GeoChat Architectural +

+ +--- + +## 🔍 RS Multimodal Instruction Dataset + +Types of annotations available in the GeoChat instruction-set. For a given RS image, we obtain object attribute and relationship information, referring expressions and region captions along with their corresponding region annotations (shown over the image). This structured information is used to create the rich instruction-set with a total of 318k image-instruction pairs. + +

+ Dataset Annotation Pipeline +

+ + + +## 🤖 Qualitative results of GeoChat + +Qualitative results of GeoChat. (left-right) Results are shown on grounding, referring object detection, and disaster/damage detection. The user can provide task-specific tokens (e.g., [grounding]) to shape model responses according to the desired behavior. The model can generate textual responses (right), only visual grounding (center) and both text and object groundings interleaved together (left). The model can also specify object types, object counts, object attributes and object relationships. +

+ Results_GCG +

+ +--- + +## 🤖 Visual Question Answering +Qualitative examples for Visual Question Answering tasks. GeoChat is able to hold multi-turn conversations, based on various types of questions, including presence, count, complex comparisons and so on. It is able to detect objects and hold conversations against low resolution images as well. +

+ Visual Question Answering +

+ +--- + +## 🤖 Scene Classification +Qualitative examples for scene classification. We give the model all the classes from the dataset and ask to choose only one. +

+ Visual Question Answering +

+ +--- + +## 🤖 Grounded Description +When asked to describe the image with the special token '[grounding]', GeoChat outputs both the description of the image as well as the bounding boxes for all the objects detected. +

+ Grounded Description +

+ +--- + +## 🤖 Referring Expression +When asked about an object as a referred expression, GeoChat is able to locate it and draw rotated bounding boxes around it correspondingly. +

+ Referring Expression +

+

+ Referring Expression +

+ +--- + +## 🤖 Region Caption +Qualitative examples for region-based captioning. Given a bounding box, GeoChat is able to provide brief descriptions about the area or the object covered by the bounding box. +

+ Region Caption +

+ +--- + +## 📜 Citation +```bibtex + @article{kuckreja2023geochat, + title={GeoChat: Grounded Large Vision-Language Model for Remote Sensing}, + author={Kuckreja, Kartik and Danish, Muhammad S. and Naseer, Muzammal and Das, Abhijit and Khan, Salman and Khan, Fahad S.}, + journal={The IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + year={2024} + } +``` +## 🙏 Acknowledgement +We are thankful to LLaVA and Vicuna for releasing their models and code as open-source contributions. + +--- +[](https://www.ival-mbzuai.com) +[](https://github.com/mbzuai-oryx) +[](https://mbzuai.ac.ae) +Fixing Hugging Face deployment + \ No newline at end of file diff --git a/Geo/GeochatP-main/app.py b/Geo/GeochatP-main/app.py new file mode 100644 index 0000000000000000000000000000000000000000..a3fcaa009bbd66a363f6d7c926a1c1300e57daac --- /dev/null +++ b/Geo/GeochatP-main/app.py @@ -0,0 +1,35 @@ +import torch +import gradio as gr +from torchvision import transforms +from PIL import Image + +# Load model +class MyModel(torch.nn.Module): + def __init__(self): + super().__init__() + # Define layers here + + def forward(self, x): + # Forward pass + return x + +model = MyModel() +model.load_state_dict(torch.load("model.pth")) +model.eval() + +# Define image preprocessing +transform = transforms.Compose([ + transforms.Resize((224, 224)), + transforms.ToTensor(), +]) + +# Define prediction function +def predict(image): + image = transform(image).unsqueeze(0) # Add batch dimension + with torch.no_grad(): + output = model(image) + return output.numpy().tolist() + +# Create Gradio interface +iface = gr.Interface(fn=predict, inputs=gr.Image(), outputs="json") +iface.launch() diff --git a/Geo/GeochatP-main/demo_images/04133.png b/Geo/GeochatP-main/demo_images/04133.png new file mode 100644 index 0000000000000000000000000000000000000000..64bea684c4be31f1486c35034478ec5009d12207 --- /dev/null +++ b/Geo/GeochatP-main/demo_images/04133.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:d554202729a40d67eb39fc38759e196ca628cf6f7f3c2679b075fcb9a9f52e80 +size 1058832 diff --git a/Geo/GeochatP-main/demo_images/04444.png b/Geo/GeochatP-main/demo_images/04444.png new file mode 100644 index 0000000000000000000000000000000000000000..bb45ba1edcc629a95f570cb3582bc636196c18fc --- /dev/null +++ b/Geo/GeochatP-main/demo_images/04444.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9c6ec5f948638f44dd80814bfe20205a5c57ec9d01ebf3fcaf50e5a37f2067f5 +size 969184 diff --git a/Geo/GeochatP-main/demo_images/7292.JPG b/Geo/GeochatP-main/demo_images/7292.JPG new file mode 100644 index 0000000000000000000000000000000000000000..50da61390718fc0508fb3ce0f08ed735c388dfaf --- /dev/null +++ b/Geo/GeochatP-main/demo_images/7292.JPG @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5a16bbdb6f4743afac0dc3ea914003c5609ff735966d88a3f6cfccddf837baaf +size 3406006 diff --git a/Geo/GeochatP-main/demo_images/MicrosoftTeams-image.png b/Geo/GeochatP-main/demo_images/MicrosoftTeams-image.png new file mode 100644 index 0000000000000000000000000000000000000000..26f970449ff491bb513b8b1c01e7fc9636a24e1a --- /dev/null +++ b/Geo/GeochatP-main/demo_images/MicrosoftTeams-image.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:1b20fb8c3e814b8bb1895079ff1c02d0234dc21607ddada6c7cc0ba89f45e479 +size 272530 diff --git a/Geo/GeochatP-main/demo_images/church_183.png b/Geo/GeochatP-main/demo_images/church_183.png new file mode 100644 index 0000000000000000000000000000000000000000..11a0c2bfbb90dc753229db76591bcf9c449d46a6 --- /dev/null +++ b/Geo/GeochatP-main/demo_images/church_183.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:225af61e9e76edbdfe995b6f8d9d1a07255e05d3b558653db687c800d293bdde +size 686050 diff --git a/Geo/GeochatP-main/demo_images/train_2956_0001.png b/Geo/GeochatP-main/demo_images/train_2956_0001.png new file mode 100644 index 0000000000000000000000000000000000000000..eb1528fde58a8aef111b44d003ab07eb3e692344 --- /dev/null +++ b/Geo/GeochatP-main/demo_images/train_2956_0001.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:2bcd2e7cd60fb52bd786f7cc7705ea6ddb68238a17fc2da6bd8495d307f11ae9 +size 679878 diff --git a/Geo/GeochatP-main/docs/Customize_Component.md b/Geo/GeochatP-main/docs/Customize_Component.md new file mode 100644 index 0000000000000000000000000000000000000000..3b747932385f5e5f328f4d801c5c70a63bc8c6d6 --- /dev/null +++ b/Geo/GeochatP-main/docs/Customize_Component.md @@ -0,0 +1,20 @@ +# Customize Components in GeoChat + +This is an initial guide on how to replace the LLMs, visual encoders, etc. with your choice of components. + +## LLM + +It is quite simple to swap out LLaMA to any other LLMs. You can refer to our implementation of [`GeoChat_llama.py`](https://github.com/mbzuai-oryx/GeoChat/blob/main/geochat/model/language_model/geochat_llama.py) for an example of how to replace the LLM. + +Although it may seem that it still needs ~100 lines of code, most of them are copied from the original `llama.py` from HF. The only part that is different is to insert some lines for processing the multimodal inputs. + +In `forward` function, you can see that we call `self.prepare_inputs_labels_for_multimodal` to process the multimodal inputs. This function is defined in `GeoChatMetaForCausalLM` and you just need to insert it into the `forward` function of your LLM. + +In `prepare_inputs_for_generation` function, you can see that we add `images` to the `model_inputs`. This is because we need to pass the images to the LLM during generation. + +These are basically all the changes you need to make to replace the LLM. + +## Visual Encoder + +You can check out [`clip_encoder.py`](https://github.com/haotian-liu/LLaVA/blob/main/llava/model/multimodal_encoder/clip_encoder.py) on how we implement the CLIP visual encoder. + diff --git a/Geo/GeochatP-main/docs/Data.md b/Geo/GeochatP-main/docs/Data.md new file mode 100644 index 0000000000000000000000000000000000000000..e8462bfebed798284d11c86b800b1f4879ba75ef --- /dev/null +++ b/Geo/GeochatP-main/docs/Data.md @@ -0,0 +1,24 @@ +## Finetuning Data +We use GeoChat-Instruct to finetune our model. The instruction following dataset is present in GeoChat_Instruct.json and the images are present in the [huggingface repo](https://huggingface.co/datasets/MBZUAI/GeoChat_Instruct). The images are split into multiple files. Download the separate files in the same folder and run the following script to merge them. + +```Shell +cat images_parta* > images.zip +``` + +Unzip the images in a folder and provide the folder path in training and evaluation scripts. + +| Data file name | Size | +| --- | ---: | +| [GeoChat_Instruct](https://huggingface.co/datasets/MBZUAI/GeoChat_Instruct/blob/main/GeoChat_Instruct.json) | 263 MB | + +## Pretraining Dataset +We use the same pretraining dataset as of LlaVA-v1.5. +The pretraining dataset used in this release is a subset of CC-3M dataset, filtered with a more balanced concept coverage distribution. Please see [here](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K) for a detailed description of the dataset structure and how to download the images. + +If you already have CC-3M dataset on your disk, the image names follow this format: `GCC_train_000000000.jpg`. You may edit the `image` field correspondingly if necessary. + +| Data | Chat File | Meta Data | Size | +| --- | --- | --- | ---: | +| CC-3M Concept-balanced 595K | [chat.json](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/chat.json) | [metadata.json](https://huggingface.co/datasets/liuhaotian/LLaVA-CC3M-Pretrain-595K/blob/main/metadata.json) | 211 MB +| LAION/CC/SBU BLIP-Caption Concept-balanced 558K | [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/blip_laion_cc_sbu_558k.json) | [metadata.json](#) | 181 MB + diff --git a/Geo/GeochatP-main/docs/Evaluation.md b/Geo/GeochatP-main/docs/Evaluation.md new file mode 100644 index 0000000000000000000000000000000000000000..a06f12e46d12240adb17013f4148a3130eb46fb4 --- /dev/null +++ b/Geo/GeochatP-main/docs/Evaluation.md @@ -0,0 +1,54 @@ +# Evaluation + +We evaluate GeoChat on a variety of tasks, including scene classification, region captioning, visual grounding, grounding description and VQA. +Converted files in the input format for GeoChat are available at [GeoChat-Bench](https://huggingface.co/datasets/MBZUAI/GeoChat-Bench/tree/main) + + +Below we provide a general guideline for evaluating datasets. + +1. LRBEN/HRBEN. +Images and ground truth for evaluation need to be downloaded from the following sources: [LRBEN](https://zenodo.org/records/6344334), [HRBEN](https://zenodo.org/records/6344367) +Give the path to the extracted image folder in the evaluation script. We add the following text after each question during our evaluation. +``` + +Answer the question using a single word or phrase. +``` +```Shell +python geochat/eval/batch_geochat_vqa.py \ + --model-path /path/to/model \ + --question-file path/to/jsonl/file \ + --answer-file path/to/output/jsonl/file \ + --image_folder path/to/image/folder/ +``` +2. Scene Classification. +Download the images from the following sources, [UCmerced](http://weegee.vision.ucmerced.edu/datasets/landuse.html), [AID](https://drive.google.com/drive/folders/1-1D9DrYYWMGuuxx-qcvIIOV1oUkAVf-M). We add the following text after each question during our evaluation. +``` + +Classify the image from the following classes. Answer in one word or a short phrase. +``` +```Shell +python geochat/eval/batch_geochat_scene.py \ + --model-path /path/to/model \ + --question-file path/to/jsonl/file \ + --answer-file path/to/output/jsonl/file \ + --image_folder path/to/image/folder/ +``` + +3. Region-Captioning/Visual grounding. + +The evaluation images are present in the image.zip folder in [GeoChat_Instruct](https://huggingface.co/datasets/MBZUAI/GeoChat_Instruct/blob/main/images.zip). +```Shell +python geochat/eval/batch_geochat_grounding.py \ + --model-path /path/to/model \ + --question-file path/to/jsonl/file \ + --answer-file path/to/output/jsonl/file \ + --image_folder path/to/image/folder/ +``` + +```Shell +python geochat/eval/batch_geochat_referring.py \ + --model-path /path/to/model \ + --question-file path/to/jsonl/file \ + --answer-file path/to/output/jsonl/file \ + --image_folder path/to/image/folder/ +``` \ No newline at end of file diff --git a/Geo/GeochatP-main/docs/LoRA.md b/Geo/GeochatP-main/docs/LoRA.md new file mode 100644 index 0000000000000000000000000000000000000000..feb8cded680017dfaf422bab6aa54aa5bc8a4ed3 --- /dev/null +++ b/Geo/GeochatP-main/docs/LoRA.md @@ -0,0 +1,24 @@ + +## Demo (Web UI) +You need GeoChat-7B to run the demo locally. Download the model from [GeoChat-7B](https://huggingface.co/MBZUAI/geochat-7B). After loading the model, run this command by giving the model path to launch the gradio demo. +#### Launch the demo +```Shell +python geochat_demo.py --model-path /path/to/model +``` + +## Training + +Please see sample training scripts for [LoRA](https://github.com/mbzuai-oryx/GeoChat/blob/main/scripts/finetune_lora.sh) + +We provide sample DeepSpeed configs, [`zero3.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3.json) is more like PyTorch FSDP, and [`zero3_offload.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero3_offload.json) can further save memory consumption by offloading parameters to CPU. `zero3.json` is usually faster than `zero3_offload.json` but requires more GPU memory, therefore, we recommend trying `zero3.json` first, and if you run out of GPU memory, try `zero3_offload.json`. You can also tweak the `per_device_train_batch_size` and `gradient_accumulation_steps` in the config to save memory, and just to make sure that `per_device_train_batch_size` and `gradient_accumulation_steps` remains the same. + +If you are having issues with ZeRO-3 configs, and there are enough VRAM, you may try [`zero2.json`](https://github.com/haotian-liu/LLaVA/blob/main/scripts/zero2.json). This consumes slightly more memory than ZeRO-3, and behaves more similar to PyTorch FSDP, while still supporting parameter-efficient tuning. + +## Create Merged Checkpoints + +```Shell +python scripts/merge_lora_weights.py \ + --model-path /path/to/lora_model \ + --model-base /path/to/base_model \ + --save-model-path /path/to/merge_model +``` diff --git a/Geo/GeochatP-main/docs/MODEL_ZOO.md b/Geo/GeochatP-main/docs/MODEL_ZOO.md new file mode 100644 index 0000000000000000000000000000000000000000..2e04f8e7c02226c7dac29d79fd5524dcaad52978 --- /dev/null +++ b/Geo/GeochatP-main/docs/MODEL_ZOO.md @@ -0,0 +1,18 @@ +# Model Zoo + +| Base LLM | Vision Encoder | Pretrain Data | Pretraining schedule | Finetuning Data | Finetuning schedule | Download | +|----------|----------------|---------------|----------------------|-----------------|--------------------|------------------ +| Vicuna-13B-v1.3 | CLIP-L-336px(extended to 504) | LCS-558K | 1e | Geochat_Instruct | proj-1e, lora-1e | [LoRA-Merged](https://huggingface.co/MBZUAI/geochat-7B) | + +## Projector weights +We use the projector from LlaVA-1.5 for initialization. [Link](https://huggingface.co/liuhaotian/llava-v1.5-7b-lora) + +**NOTE**: When you use our pretrained projector for visual instruction tuning, it is very important to **use the same base LLM and vision encoder** as the one we used for pretraining the projector. Otherwise, the performance will be very bad. + +When using these projector weights to instruction tune your LMM, please make sure that these options are correctly set as follows, + +```Shell +--mm_use_im_start_end False +--mm_use_im_patch_token False +``` + diff --git a/Geo/GeochatP-main/docs/geochat_supp.pdf b/Geo/GeochatP-main/docs/geochat_supp.pdf new file mode 100644 index 0000000000000000000000000000000000000000..3551bf1796548e97eb613cd4c58f5cb454277835 --- /dev/null +++ b/Geo/GeochatP-main/docs/geochat_supp.pdf @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:dc9b5d3df4af5c06e59fc2258332e00b779c55d441405cb5a7fd7997d29b63fe +size 4839915 diff --git a/Geo/GeochatP-main/geochat/__init__.py b/Geo/GeochatP-main/geochat/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..3ba7fb8f19fb7df0878defb3a2278678afbd1ee8 --- /dev/null +++ b/Geo/GeochatP-main/geochat/__init__.py @@ -0,0 +1 @@ +from .model import GeoChatLlamaForCausalLM diff --git a/Geo/GeochatP-main/geochat/constants.py b/Geo/GeochatP-main/geochat/constants.py new file mode 100644 index 0000000000000000000000000000000000000000..be8cf0204969a6c973f442b383d8e425d684e826 --- /dev/null +++ b/Geo/GeochatP-main/geochat/constants.py @@ -0,0 +1,12 @@ +CONTROLLER_HEART_BEAT_EXPIRATION = 30 +WORKER_HEART_BEAT_INTERVAL = 15 + +LOGDIR = "." + +# Model Constants +IGNORE_INDEX = -100 +IMAGE_TOKEN_INDEX = -200 +DEFAULT_IMAGE_TOKEN = "" +DEFAULT_IMAGE_PATCH_TOKEN = "" +DEFAULT_IM_START_TOKEN = "" +DEFAULT_IM_END_TOKEN = "" diff --git a/Geo/GeochatP-main/geochat/conversation.py b/Geo/GeochatP-main/geochat/conversation.py new file mode 100644 index 0000000000000000000000000000000000000000..c6632f8f09bffe4fa645c7f565494af75161c542 --- /dev/null +++ b/Geo/GeochatP-main/geochat/conversation.py @@ -0,0 +1,520 @@ +import dataclasses +from enum import auto, Enum +from typing import List, Tuple +from PIL import Image +from threading import Thread + +from geochat.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +# from llava.conversation import conv_templates, SeparatorStyle +# from llava.model.builder import load_pretrained_model +from geochat.utils import disable_torch_init +from geochat.mm_utils import process_images_demo, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria +from transformers import StoppingCriteria, StoppingCriteriaList, TextIteratorStreamer,TextStreamer +import torch +import dataclasses +from enum import auto, Enum +from typing import List, Tuple, Any + + +class SeparatorStyle(Enum): + """Different separator style.""" + SINGLE = auto() + TWO = auto() + MPT = auto() + PLAIN = auto() + LLAMA_2 = auto() + + +@dataclasses.dataclass +class Conversation: + """A class that keeps all conversation history.""" + system: str + roles: List[str] + messages: List[List[str]] + offset: int + sep_style: SeparatorStyle = SeparatorStyle.SINGLE + sep: str = "###" + sep2: str = None + version: str = "Unknown" + + skip_next: bool = False + + def get_prompt(self): + messages = self.messages + if len(messages) > 0 and type(messages[0][1]) is tuple: + messages = self.messages.copy() + init_role, init_msg = messages[0].copy() + init_msg = init_msg[0].replace("", "").strip() + if 'mmtag' in self.version: + messages[0] = (init_role, init_msg) + messages.insert(0, (self.roles[0], "")) + messages.insert(1, (self.roles[1], "Received.")) + else: + messages[0] = (init_role, "\n" + init_msg) + + if self.sep_style == SeparatorStyle.SINGLE: + ret = self.system + self.sep + for role, message in messages: + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + ": " + message + self.sep + else: + ret += role + ":" + elif self.sep_style == SeparatorStyle.TWO: + seps = [self.sep, self.sep2] + ret = self.system + seps[0] + for i, (role, message) in enumerate(messages): + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + ": " + message + seps[i % 2] + else: + ret += role + ":" + elif self.sep_style == SeparatorStyle.MPT: + ret = self.system + self.sep + for role, message in messages: + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + message + self.sep + else: + ret += role + elif self.sep_style == SeparatorStyle.LLAMA_2: + wrap_sys = lambda msg: f"<>\n{msg}\n<>\n\n" + wrap_inst = lambda msg: f"[INST] {msg} [/INST]" + ret = "" + + for i, (role, message) in enumerate(messages): + if i == 0: + assert message, "first message should not be none" + assert role == self.roles[0], "first message should come from user" + if message: + if type(message) is tuple: + message, _, _ = message + if i == 0: message = wrap_sys(self.system) + message + if i % 2 == 0: + message = wrap_inst(message) + ret += self.sep + message + else: + ret += " " + message + " " + self.sep2 + else: + ret += "" + ret = ret.lstrip(self.sep) + elif self.sep_style == SeparatorStyle.PLAIN: + seps = [self.sep, self.sep2] + ret = self.system + for i, (role, message) in enumerate(messages): + if message: + if type(message) is tuple: + message, _, _ = message + ret += message + seps[i % 2] + else: + ret += "" + else: + raise ValueError(f"Invalid style: {self.sep_style}") + + return ret + + def append_message(self, role, message): + self.messages.append([role, message]) + + def get_images(self, return_pil=False): + images = [] + for i, (role, msg) in enumerate(self.messages[self.offset:]): + if i % 2 == 0: + if type(msg) is tuple: + import base64 + from io import BytesIO + from PIL import Image + msg, image, image_process_mode = msg + if image_process_mode == "Pad": + def expand2square(pil_img, background_color=(122, 116, 104)): + width, height = pil_img.size + if width == height: + return pil_img + elif width > height: + result = Image.new(pil_img.mode, (width, width), background_color) + result.paste(pil_img, (0, (width - height) // 2)) + return result + else: + result = Image.new(pil_img.mode, (height, height), background_color) + result.paste(pil_img, ((height - width) // 2, 0)) + return result + image = expand2square(image) + elif image_process_mode in ["Default", "Crop"]: + pass + elif image_process_mode == "Resize": + image = image.resize((336, 336)) + else: + raise ValueError(f"Invalid image_process_mode: {image_process_mode}") + max_hw, min_hw = max(image.size), min(image.size) + aspect_ratio = max_hw / min_hw + max_len, min_len = 800, 400 + shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) + longest_edge = int(shortest_edge * aspect_ratio) + W, H = image.size + if longest_edge != max(image.size): + if H > W: + H, W = longest_edge, shortest_edge + else: + H, W = shortest_edge, longest_edge + image = image.resize((W, H)) + if return_pil: + images.append(image) + else: + buffered = BytesIO() + image.save(buffered, format="PNG") + img_b64_str = base64.b64encode(buffered.getvalue()).decode() + images.append(img_b64_str) + return images + + def to_gradio_chatbot(self): + ret = [] + for i, (role, msg) in enumerate(self.messages[self.offset:]): + if i % 2 == 0: + if type(msg) is tuple: + import base64 + from io import BytesIO + msg, image, image_process_mode = msg + max_hw, min_hw = max(image.size), min(image.size) + aspect_ratio = max_hw / min_hw + max_len, min_len = 800, 400 + shortest_edge = int(min(max_len / aspect_ratio, min_len, min_hw)) + longest_edge = int(shortest_edge * aspect_ratio) + W, H = image.size + if H > W: + H, W = longest_edge, shortest_edge + else: + H, W = shortest_edge, longest_edge + image = image.resize((W, H)) + buffered = BytesIO() + image.save(buffered, format="JPEG") + img_b64_str = base64.b64encode(buffered.getvalue()).decode() + img_str = f'user upload image' + msg = img_str + msg.replace('', '').strip() + ret.append([msg, None]) + else: + ret.append([msg, None]) + else: + ret[-1][-1] = msg + return ret + + def copy(self): + return Conversation( + system=self.system, + roles=self.roles, + messages=[[x, y] for x, y in self.messages], + offset=self.offset, + sep_style=self.sep_style, + sep=self.sep, + sep2=self.sep2, + version=self.version) + + def dict(self): + if len(self.get_images()) > 0: + return { + "system": self.system, + "roles": self.roles, + "messages": [[x, y[0] if type(y) is tuple else y] for x, y in self.messages], + "offset": self.offset, + "sep": self.sep, + "sep2": self.sep2, + } + return { + "system": self.system, + "roles": self.roles, + "messages": self.messages, + "offset": self.offset, + "sep": self.sep, + "sep2": self.sep2, + } + + +conv_vicuna_v0 = Conversation( + system="A chat between a curious human and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the human's questions.", + roles=("Human", "Assistant"), + messages=( + ("Human", "What are the key differences between renewable and non-renewable energy sources?"), + ("Assistant", + "Renewable energy sources are those that can be replenished naturally in a relatively " + "short amount of time, such as solar, wind, hydro, geothermal, and biomass. " + "Non-renewable energy sources, on the other hand, are finite and will eventually be " + "depleted, such as coal, oil, and natural gas. Here are some key differences between " + "renewable and non-renewable energy sources:\n" + "1. Availability: Renewable energy sources are virtually inexhaustible, while non-renewable " + "energy sources are finite and will eventually run out.\n" + "2. Environmental impact: Renewable energy sources have a much lower environmental impact " + "than non-renewable sources, which can lead to air and water pollution, greenhouse gas emissions, " + "and other negative effects.\n" + "3. Cost: Renewable energy sources can be more expensive to initially set up, but they typically " + "have lower operational costs than non-renewable sources.\n" + "4. Reliability: Renewable energy sources are often more reliable and can be used in more remote " + "locations than non-renewable sources.\n" + "5. Flexibility: Renewable energy sources are often more flexible and can be adapted to different " + "situations and needs, while non-renewable sources are more rigid and inflexible.\n" + "6. Sustainability: Renewable energy sources are more sustainable over the long term, while " + "non-renewable sources are not, and their depletion can lead to economic and social instability.\n") + ), + offset=2, + sep_style=SeparatorStyle.SINGLE, + sep="###", +) + +conv_vicuna_v1 = Conversation( + system="A chat between a curious user and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the user's questions.", + roles=("USER", "ASSISTANT"), + version="v1", + messages=(), + offset=0, + sep_style=SeparatorStyle.TWO, + sep=" ", + sep2="", +) + +conv_llama_2 = Conversation( + system="""You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature. + +If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.""", + roles=("USER", "ASSISTANT"), + version="llama_v2", + messages=(), + offset=0, + sep_style=SeparatorStyle.LLAMA_2, + sep="", + sep2="", +) + +conv_llava_llama_2 = Conversation( + system="You are a helpful language and vision assistant. " + "You are able to understand the visual content that the user provides, " + "and assist the user with a variety of tasks using natural language.", + roles=("USER", "ASSISTANT"), + version="llama_v2", + messages=(), + offset=0, + sep_style=SeparatorStyle.LLAMA_2, + sep="", + sep2="", +) + +conv_mpt = Conversation( + system="""<|im_start|>system +A conversation between a user and an LLM-based AI assistant. The assistant gives helpful and honest answers.""", + roles=("<|im_start|>user\n", "<|im_start|>assistant\n"), + version="mpt", + messages=(), + offset=0, + sep_style=SeparatorStyle.MPT, + sep="<|im_end|>", +) + +conv_llava_plain = Conversation( + system="", + roles=("", ""), + messages=( + ), + offset=0, + sep_style=SeparatorStyle.PLAIN, + sep="\n", +) + +conv_llava_v0 = Conversation( + system="A chat between a curious human and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the human's questions.", + roles=("Human", "Assistant"), + messages=( + ), + offset=0, + sep_style=SeparatorStyle.SINGLE, + sep="###", +) + +conv_llava_v0_mmtag = Conversation( + system="A chat between a curious user and an artificial intelligence assistant. " + "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." + "The visual content will be provided with the following format: visual content.", + roles=("Human", "Assistant"), + messages=( + ), + offset=0, + sep_style=SeparatorStyle.SINGLE, + sep="###", + version="v0_mmtag", +) + +conv_llava_v1 = Conversation( + system="A chat between a curious human and an artificial intelligence assistant. " + "The assistant gives helpful, detailed, and polite answers to the human's questions.", + roles=("USER", "ASSISTANT"), + version="v1", + messages=(), + offset=0, + sep_style=SeparatorStyle.TWO, + sep=" ", + sep2="", +) + +conv_llava_v1_mmtag = Conversation( + system="A chat between a curious user and an artificial intelligence assistant. " + "The assistant is able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language." + "The visual content will be provided with the following format: visual content.", + roles=("USER", "ASSISTANT"), + messages=(), + offset=0, + sep_style=SeparatorStyle.TWO, + sep=" ", + sep2="", + version="v1_mmtag", +) + +default_conversation = conv_vicuna_v0 +conv_templates = { + "default": conv_vicuna_v0, + "v0": conv_vicuna_v0, + "v1": conv_vicuna_v1, + "vicuna_v1": conv_vicuna_v1, + "llama_2": conv_llama_2, + + "plain": conv_llava_plain, + "v0_plain": conv_llava_plain, + "llava_v0": conv_llava_v0, + "v0_mmtag": conv_llava_v0_mmtag, + "llava_v1": conv_llava_v1, + "v1_mmtag": conv_llava_v1_mmtag, + "llava_llama_2": conv_llava_llama_2, + + "mpt": conv_mpt, +} + +class Chat: + def __init__(self, model, image_processor,tokenizer, device='cuda:0', stopping_criteria=None): + self.device = device + self.model = model + self.vis_processor = image_processor + self.tokenizer=tokenizer + + # if stopping_criteria is not None: + # self.stopping_criteria = stopping_criteria + # else: + # stop_words_ids = [torch.tensor([2]).to(self.device)] + # self.stopping_criteria = StoppingCriteriaList([StoppingCriteriaSub(stops=stop_words_ids)]) + + def ask(self, text, conv): + # import pdb;pdb.set_trace() + if len(conv.messages) > 0 and conv.messages[-1][0] == conv.roles[0] \ + and conv.messages[-1][1][-9:] == '\n': # last message is image. + conv.messages[-1][1] = ' '.join([conv.messages[-1][1], text]) + else: + conv.append_message(conv.roles[0], text) + + def answer_prepare(self, conv, img_list, max_new_tokens=300, num_beams=1, min_length=1, top_p=0.9, + repetition_penalty=1.05, length_penalty=1, temperature=1.0, max_length=2000): + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + # prompt='A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human\'s questions. USER: \n hello ASSISTANT:' + text_input_ids = tokenizer_image_token(prompt, self.tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(device=self.device) + + stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 + keywords = [stop_str] + stopping_criteria = KeywordsStoppingCriteria(keywords, self.tokenizer, text_input_ids) + current_max_len = text_input_ids.shape[1] + max_new_tokens + if current_max_len - max_length > 0: + print('Warning: The number of tokens in current conversation exceeds the max length. ' + 'The model will not see the contexts outside the range.') + begin_idx = max(0, current_max_len - max_length) + embs = text_input_ids[:, begin_idx:] + + generation_kwargs = dict( + input_ids=embs, + images=img_list[0], + max_new_tokens=max_new_tokens, + stopping_criteria=[stopping_criteria], + num_beams=num_beams, + do_sample=True, + min_length=min_length, + top_p=top_p, + use_cache=True, + repetition_penalty=repetition_penalty, + length_penalty=length_penalty, + temperature=float(temperature), + ) + return generation_kwargs + + # def answer(self, conv, img_list, **kargs): + # generation_dict = self.answer_prepare(conv, img_list, **kargs) + # output_token = self.model_generate(**generation_dict)[0] + # output_text = self.model.llama_tokenizer.decode(output_token, skip_special_tokens=True) + + # output_text = output_text.split('###')[0] # remove the stop sign '###' + # output_text = output_text.split('Assistant:')[-1].strip() + + # conv.messages[-1][1] = output_text + # return output_text, output_token.cpu().numpy() + + def stream_answer(self, conv, img_list, **kargs): + generation_kwargs = self.answer_prepare(conv, img_list, **kargs) + + streamer = TextIteratorStreamer(self.tokenizer,skip_prompt=True, skip_special_tokens=True) + generation_kwargs['streamer'] = streamer + # import pdb;pdb.set_trace() + # output_ids=self.model.generate(*generation_kwargs) + output=self.model_generate(kwargs=generation_kwargs) + # thread = Thread(target=self.model_generate, kwargs=generation_kwargs) + # thread.start() + return streamer + + def model_generate(self, *args, **kwargs): + # for 8 bit and 16 bit compatibility + with torch.inference_mode(): + output = self.model.generate(kwargs['kwargs']['input_ids'], + images=kwargs['kwargs']['images'], + do_sample=False, + temperature=kwargs['kwargs']['temperature'], + max_new_tokens=kwargs['kwargs']['max_new_tokens'], + streamer=kwargs['kwargs']['streamer'], + use_cache=kwargs['kwargs']['use_cache'], + stopping_criteria=kwargs['kwargs']['stopping_criteria']) + # import pdb;pdb.set_trace() + # print(output) + outputs = self.tokenizer.decode(output[0,kwargs['kwargs']['input_ids'].shape[1]:]).strip() + # print(outputs) + return output + + def encode_img(self, img_list): + + image = img_list[0] + # image='/share/data/drive_3/kartik/LLaVA/output_images/output.jpg' + img_list.pop(0) + if isinstance(image, str): # is a image path + raw_image = Image.open(image).convert('RGB') + image = process_images_demo([raw_image], self.vis_processor) + # print("raw") + # image = self.vis_processor(raw_image).unsqueeze(0).to(self.device) + elif isinstance(image, Image.Image): + raw_image = image + image = process_images_demo([raw_image], self.vis_processor ) + image=image.to(device=self.device,dtype=torch.float16) + # print("Image") + # image = self.vis_processor(raw_image).unsqueeze(0).to(self.device) + elif isinstance(image, torch.Tensor): + if len(image.shape) == 3: + image = image.unsqueeze(0) + image = image.to(self.device) + + # image_emb, _ = self.model.encode_img(image) + img_list.append(image) + + def upload_img(self, image, conv, img_list): + conv.append_message(conv.roles[0], DEFAULT_IMAGE_TOKEN+'\n') + img_list.append(image) + msg = "Received." + + return msg + + + +# if __name__ == "__main__": +# print(default_conversation.get_prompt()) diff --git a/Geo/GeochatP-main/geochat/eval/batch_geochat_grounding.py b/Geo/GeochatP-main/geochat/eval/batch_geochat_grounding.py new file mode 100644 index 0000000000000000000000000000000000000000..ee5d1bac159baee572d6b7af7d5c7b06e22e77be --- /dev/null +++ b/Geo/GeochatP-main/geochat/eval/batch_geochat_grounding.py @@ -0,0 +1,138 @@ +import argparse +import torch +import os +import json +from tqdm import tqdm +import shortuuid + +from geochat.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from geochat.conversation import conv_templates, SeparatorStyle +from geochat.model.builder import load_pretrained_model +from geochat.utils import disable_torch_init +from geochat.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria + +from PIL import Image +import math +def split_list(lst, n): + """Split a list into n (roughly) equal-sized chunks""" + chunk_size = math.ceil(len(lst) / n) # integer division + return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] + + +def get_chunk(lst, n, k): + chunks = split_list(lst, n) + return chunks[k] + + +def eval_model(args): + # Model + disable_torch_init() + model_path = os.path.expanduser(args.model_path) + model_name = get_model_name_from_path(model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) + import pdb;pdb.set_trace() + # print(model) + questions=[] + questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] + + + questions = get_chunk(questions, args.num_chunks, args.chunk_idx) + answers_file = os.path.expanduser(args.answers_file) + os.makedirs(os.path.dirname(answers_file), exist_ok=True) + + ans_file = open(answers_file, "w") + + for i in tqdm(range(0,len(questions),args.batch_size)): + input_batch=[] + input_image_batch=[] + count=i + image_folder=[] + batch_end = min(i + args.batch_size, len(questions)) + + + for j in range(i,batch_end): + image_file=questions[j]['image_id']+'.png' + + if questions[j]['type']=='ref': + qs="[refer] Give me the location of

" + qs+"

" + else: + qs="[grounding]" + qs + + if model.config.mm_use_im_start_end: + qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs + else: + qs = DEFAULT_IMAGE_TOKEN + '\n' + qs + + conv = conv_templates[args.conv_mode].copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() + input_batch.append(input_ids) + + image = Image.open(os.path.join(args.image_folder, image_file)) + + image_folder.append(image) + + stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 + keywords = [stop_str] + stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) + + max_length = max(tensor.size(1) for tensor in input_batch) + + final_input_list = [torch.cat((torch.zeros((1,max_length - tensor.size(1)), dtype=tensor.dtype,device=tensor.get_device()), tensor),dim=1) for tensor in input_batch] + final_input_tensors=torch.cat(final_input_list,dim=0) + image_tensor_batch = image_processor.preprocess(image_folder,crop_size ={'height': 504, 'width': 504},size = {'shortest_edge': 504}, return_tensors='pt')['pixel_values'] + + with torch.inference_mode(): + output_ids = model.generate( final_input_tensors, images=image_tensor_batch.half().cuda(), do_sample=False , temperature=args.temperature, top_p=args.top_p, num_beams=1, max_new_tokens=256,length_penalty=2.0, use_cache=True) + + input_token_len = final_input_tensors.shape[1] + n_diff_input_output = (final_input_tensors != output_ids[:, :input_token_len]).sum().item() + if n_diff_input_output > 0: + print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') + outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True) + for k in range(0,len(final_input_list)): + output = outputs[k].strip() + if output.endswith(stop_str): + output = output[:-len(stop_str)] + output = output.strip() + + ans_id = shortuuid.uuid() + + ans_file.write(json.dumps({ + + "question_id": questions[count]["question_id"], + "image_id": questions[count]["image_id"], + "answer": output, + "ground_truth": questions[count]['ground_truth'], + "question":questions[count]['question'], + "type": questions[count]['type'], + "dataset": questions[count]['dataset'], + "obj_ids": questions[count]['obj_ids'], + "size_group": questions[count]['size_group'], + + }) + "\n") + count=count+1 + ans_file.flush() + ans_file.close() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--image-folder", type=str, default="") + parser.add_argument("--question-file", type=str, default="tables/question.jsonl") + parser.add_argument("--answers-file", type=str, default="answer.jsonl") + parser.add_argument("--conv-mode", type=str, default="llava_v1") + parser.add_argument("--num-chunks", type=int, default=1) + parser.add_argument("--chunk-idx", type=int, default=0) + parser.add_argument("--temperature", type=float, default=0.2) + parser.add_argument("--top_p", type=float, default=None) + parser.add_argument("--num_beams", type=int, default=1) + parser.add_argument("--batch_size",type=int, default=1) + args = parser.parse_args() + + eval_model(args) diff --git a/Geo/GeochatP-main/geochat/eval/batch_geochat_referring.py b/Geo/GeochatP-main/geochat/eval/batch_geochat_referring.py new file mode 100644 index 0000000000000000000000000000000000000000..8da1b0d0cf0d0f79239fc18eee0e0a421bbc7a09 --- /dev/null +++ b/Geo/GeochatP-main/geochat/eval/batch_geochat_referring.py @@ -0,0 +1,132 @@ +import argparse +import torch +import os +import json +from tqdm import tqdm +import shortuuid + +from geochat.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from geochat.conversation import conv_templates, SeparatorStyle +from geochat.model.builder import load_pretrained_model +from geochat.utils import disable_torch_init +from geochat.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria + +from PIL import Image +import math +def split_list(lst, n): + """Split a list into n (roughly) equal-sized chunks""" + chunk_size = math.ceil(len(lst) / n) # integer division + return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] + + +def get_chunk(lst, n, k): + chunks = split_list(lst, n) + return chunks[k] + + +def eval_model(args): + # Model + disable_torch_init() + model_path = os.path.expanduser(args.model_path) + model_name = get_model_name_from_path(model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) + # print(model) + questions=[] + questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] + + + questions = get_chunk(questions, args.num_chunks, args.chunk_idx) + answers_file = os.path.expanduser(args.answers_file) + os.makedirs(os.path.dirname(answers_file), exist_ok=True) + + ans_file = open(answers_file, "w") + + for i in tqdm(range(0,len(questions),args.batch_size)): + input_batch=[] + input_image_batch=[] + count=i + image_folder=[] + batch_end = min(i + args.batch_size, len(questions)) + + + for j in range(i,batch_end): + image_file=questions[j]['image_id']+'.png' + qs="[identify] What is the object present at " + questions[j]['question'] + + if model.config.mm_use_im_start_end: + qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs + else: + qs = DEFAULT_IMAGE_TOKEN + '\n' + qs + + conv = conv_templates[args.conv_mode].copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() + input_batch.append(input_ids) + + image = Image.open(os.path.join(args.image_folder, image_file)) + + image_folder.append(image) + + stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 + keywords = [stop_str] + stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) + + max_length = max(tensor.size(1) for tensor in input_batch) + + final_input_list = [torch.cat((torch.zeros((1,max_length - tensor.size(1)), dtype=tensor.dtype,device=tensor.get_device()), tensor),dim=1) for tensor in input_batch] + final_input_tensors=torch.cat(final_input_list,dim=0) + image_tensor_batch = image_processor.preprocess(image_folder,crop_size ={'height': 504, 'width': 504},size = {'shortest_edge': 504}, return_tensors='pt')['pixel_values'] + + with torch.inference_mode(): + output_ids = model.generate( final_input_tensors, images=image_tensor_batch.half().cuda(), do_sample=False , temperature=args.temperature, top_p=args.top_p, num_beams=1, max_new_tokens=256,length_penalty=2.0, use_cache=True) + + input_token_len = final_input_tensors.shape[1] + n_diff_input_output = (final_input_tensors != output_ids[:, :input_token_len]).sum().item() + if n_diff_input_output > 0: + print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') + outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True) + for k in range(0,len(final_input_list)): + output = outputs[k].strip() + if output.endswith(stop_str): + output = output[:-len(stop_str)] + output = output.strip() + + ans_id = shortuuid.uuid() + + ans_file.write(json.dumps({ + "question_id": questions[count]["question_id"], + "image_id": questions[count]["image_id"], + "answer": output, + "ground_truth": questions[count]['ground_truth'], + "question":questions[count]['question'], + "type": questions[count]['type'], + "dataset": questions[count]['dataset'], + "obj_ids": questions[count]['obj_ids'], + "size_group": questions[count]['size_group'], + + }) + "\n") + count=count+1 + ans_file.flush() + ans_file.close() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--image-folder", type=str, default="") + parser.add_argument("--question-file", type=str, default="tables/question.jsonl") + parser.add_argument("--answers-file", type=str, default="answer.jsonl") + parser.add_argument("--conv-mode", type=str, default="llava_v1") + parser.add_argument("--num-chunks", type=int, default=1) + parser.add_argument("--chunk-idx", type=int, default=0) + parser.add_argument("--temperature", type=float, default=0.2) + parser.add_argument("--top_p", type=float, default=None) + parser.add_argument("--num_beams", type=int, default=1) + parser.add_argument("--batch_size",type=int, default=1) + args = parser.parse_args() + + eval_model(args) diff --git a/Geo/GeochatP-main/geochat/eval/batch_geochat_scene.py b/Geo/GeochatP-main/geochat/eval/batch_geochat_scene.py new file mode 100644 index 0000000000000000000000000000000000000000..cbd336ff1b06a4795469c98a9b2685c83edb1579 --- /dev/null +++ b/Geo/GeochatP-main/geochat/eval/batch_geochat_scene.py @@ -0,0 +1,139 @@ +import argparse +import torch +import os +import json +from tqdm import tqdm +import shortuuid + +from geochat.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from geochat.conversation import conv_templates, SeparatorStyle +from geochat.model.builder import load_pretrained_model +from geochat.utils import disable_torch_init +from geochat.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria + +from PIL import Image +import math + +def evaluation_metrics(data_path): + + base = [json.loads(q) for q in open(data_path, "r")] + correct=0 + incorrect=0 + for answers in tqdm(base): + gt=answers['question_id'].split('/')[0].lower() + answer=answers['answer'].replace(' ','').lower().replace('.','') + if gt==answer: + correct=correct+1 + else: + incorrect=incorrect+1 + # else: + # continue + print('correct:',correct) + print('incorrect:',incorrect) + print('Total:',correct+incorrect) + print('Acc:',(correct/(correct+incorrect))) + + + + +def eval_model(args): + # Model + disable_torch_init() + model_path = os.path.expanduser(args.model_path) + model_name = get_model_name_from_path(model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) + # print(model) + questions=[] + questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] + + questions = get_chunk(questions, args.num_chunks, args.chunk_idx) + answers_file = os.path.expanduser(args.answers_file) + os.makedirs(os.path.dirname(answers_file), exist_ok=True) + + ans_file = open(answers_file, "w") + + for i in tqdm(range(0,len(questions),args.batch_size)): + input_batch=[] + input_image_batch=[] + count=i + image_folder=[] + batch_end = min(i + args.batch_size, len(questions)) + + + for j in range(i,batch_end): + image_file=questions[j]['image'] + qs=questions[j]['text'] + + if model.config.mm_use_im_start_end: + qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs + else: + qs = DEFAULT_IMAGE_TOKEN + '\n' + qs + + conv = conv_templates[args.conv_mode].copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() + input_batch.append(input_ids) + + image = Image.open(os.path.join(args.image_folder, image_file)) + + image_folder.append(image) + + stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 + keywords = [stop_str] + stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) + + max_length = max(tensor.size(1) for tensor in input_batch) + + final_input_list = [torch.cat((torch.zeros((1,max_length - tensor.size(1)), dtype=tensor.dtype,device=tensor.get_device()), tensor),dim=1) for tensor in input_batch] + final_input_tensors=torch.cat(final_input_list,dim=0) + image_tensor_batch = image_processor.preprocess(image_folder,crop_size ={'height': 504, 'width': 504},size = {'shortest_edge': 504}, return_tensors='pt')['pixel_values'] + + with torch.inference_mode(): + output_ids = model.generate( final_input_tensors, images=image_tensor_batch.half().cuda(), do_sample=False , temperature=args.temperature, top_p=args.top_p, num_beams=1, max_new_tokens=256,length_penalty=2.0, use_cache=True) + + input_token_len = final_input_tensors.shape[1] + n_diff_input_output = (final_input_tensors != output_ids[:, :input_token_len]).sum().item() + if n_diff_input_output > 0: + print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') + outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True) + for k in range(0,len(final_input_list)): + output = outputs[k].strip() + if output.endswith(stop_str): + output = output[:-len(stop_str)] + output = output.strip() + + ans_id = shortuuid.uuid() + + ans_file.write(json.dumps({ + + "question_id": questions[count]["question_id"], + "image_id": questions[count]["image"], + "answer": output, + "ground_truth": questions[count]['ground_truth'] + }) + "\n") + count=count+1 + ans_file.flush() + ans_file.close() + evaluation_metrics(answers_file) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--image-folder", type=str, default="") + parser.add_argument("--question-file", type=str, default="tables/question.jsonl") + parser.add_argument("--answers-file", type=str, default="answer.jsonl") + parser.add_argument("--conv-mode", type=str, default="llava_v1") + parser.add_argument("--num-chunks", type=int, default=1) + parser.add_argument("--chunk-idx", type=int, default=0) + parser.add_argument("--temperature", type=float, default=0.2) + parser.add_argument("--top_p", type=float, default=None) + parser.add_argument("--num_beams", type=int, default=1) + parser.add_argument("--batch_size",type=int, default=1) + args = parser.parse_args() + + eval_model(args) diff --git a/Geo/GeochatP-main/geochat/eval/batch_geochat_vqa.py b/Geo/GeochatP-main/geochat/eval/batch_geochat_vqa.py new file mode 100644 index 0000000000000000000000000000000000000000..4ae051c7193c77c11dde3660a1056ccb7fff6b97 --- /dev/null +++ b/Geo/GeochatP-main/geochat/eval/batch_geochat_vqa.py @@ -0,0 +1,125 @@ +import argparse +import torch +import os +import json +from tqdm import tqdm +import shortuuid + +from geochat.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from geochat.conversation import conv_templates, SeparatorStyle +from geochat.model.builder import load_pretrained_model +from geochat.utils import disable_torch_init +from geochat.mm_utils import tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria + +from PIL import Image +import math +def split_list(lst, n): + """Split a list into n (roughly) equal-sized chunks""" + chunk_size = math.ceil(len(lst) / n) # integer division + return [lst[i:i+chunk_size] for i in range(0, len(lst), chunk_size)] + + +def get_chunk(lst, n, k): + chunks = split_list(lst, n) + return chunks[k] + + +def eval_model(args): + # Model + disable_torch_init() + model_path = os.path.expanduser(args.model_path) + model_name = get_model_name_from_path(model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name) + + questions=[] + questions = [json.loads(q) for q in open(os.path.expanduser(args.question_file), "r")] + + + questions = get_chunk(questions, args.num_chunks, args.chunk_idx) + answers_file = os.path.expanduser(args.answers_file) + os.makedirs(os.path.dirname(answers_file), exist_ok=True) + + ans_file = open(answers_file, "w") + + for i in tqdm(range(0,len(questions),args.batch_size)): + input_batch=[] + input_image_batch=[] + count=i + image_folder=[] + batch_end = min(i + args.batch_size, len(questions)) + + + for j in range(i,batch_end): + image_file=questions[j]['image'] + qs=questions[j]['text'] + + if model.config.mm_use_im_start_end: + qs = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + qs + else: + qs = DEFAULT_IMAGE_TOKEN + '\n' + qs + + conv = conv_templates[args.conv_mode].copy() + conv.append_message(conv.roles[0], qs) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() + input_batch.append(input_ids) + + image = Image.open(os.path.join(args.image_folder, image_file)) + + image_folder.append(image) + + stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 + keywords = [stop_str] + stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) + + max_length = max(tensor.size(1) for tensor in input_batch) + + final_input_list = [torch.cat((torch.zeros((1,max_length - tensor.size(1)), dtype=tensor.dtype,device=tensor.get_device()), tensor),dim=1) for tensor in input_batch] + final_input_tensors=torch.cat(final_input_list,dim=0) + image_tensor_batch = image_processor.preprocess(image_folder,crop_size ={'height': 504, 'width': 504},size = {'shortest_edge': 504}, return_tensors='pt')['pixel_values'] + + with torch.inference_mode(): + output_ids = model.generate( final_input_tensors, images=image_tensor_batch.half().cuda(), do_sample=False , temperature=args.temperature, top_p=args.top_p, num_beams=1, max_new_tokens=256,length_penalty=2.0, use_cache=True) + + input_token_len = final_input_tensors.shape[1] + n_diff_input_output = (final_input_tensors != output_ids[:, :input_token_len]).sum().item() + if n_diff_input_output > 0: + print(f'[Warning] {n_diff_input_output} output_ids are not the same as the input_ids') + outputs = tokenizer.batch_decode(output_ids[:, input_token_len:], skip_special_tokens=True) + for k in range(0,len(final_input_list)): + output = outputs[k].strip() + if output.endswith(stop_str): + output = output[:-len(stop_str)] + output = output.strip() + + ans_id = shortuuid.uuid() + + ans_file.write(json.dumps({ + "question_id": questions[count]["question_id"], + "image_id": questions[count]["image"], + "answer": output, + }) + "\n") + count=count+1 + ans_file.flush() + ans_file.close() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--image-folder", type=str, default="") + parser.add_argument("--question-file", type=str, default="tables/question.jsonl") + parser.add_argument("--answers-file", type=str, default="answer.jsonl") + parser.add_argument("--conv-mode", type=str, default="llava_v1") + parser.add_argument("--num-chunks", type=int, default=1) + parser.add_argument("--chunk-idx", type=int, default=0) + parser.add_argument("--temperature", type=float, default=0.2) + parser.add_argument("--top_p", type=float, default=None) + parser.add_argument("--num_beams", type=int, default=1) + parser.add_argument("--batch_size",type=int, default=1) + args = parser.parse_args() + + eval_model(args) diff --git a/Geo/GeochatP-main/geochat/mm_utils.py b/Geo/GeochatP-main/geochat/mm_utils.py new file mode 100644 index 0000000000000000000000000000000000000000..78e79e9b4ba64af775971291c1094078c76ce45d --- /dev/null +++ b/Geo/GeochatP-main/geochat/mm_utils.py @@ -0,0 +1,121 @@ +from PIL import Image +from io import BytesIO +import base64 + +import torch +from transformers import StoppingCriteria +from geochat.constants import IMAGE_TOKEN_INDEX +import numpy as np + +def load_image_from_base64(image): + return Image.open(BytesIO(base64.b64decode(image))) + + +def expand2square(pil_img, background_color): + width, height = pil_img.size + if width == height: + return pil_img + elif width > height: + result = Image.new(pil_img.mode, (width, width), background_color) + result.paste(pil_img, (0, (width - height) // 2)) + return result + else: + result = Image.new(pil_img.mode, (height, height), background_color) + result.paste(pil_img, ((height - width) // 2, 0)) + return result + + +def process_images(images, image_processor, model_cfg): + image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None) + new_images = [] + if image_aspect_ratio == 'pad': + for image in images: + image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) + image = image_processor.preprocess(image,crop_size ={'height': 504, 'width': 504},size = {'shortest_edge': 504},return_tensors='pt')['pixel_values'][0] + # image = image_processor.preprocess(image,return_tensors='pt')['pixel_values'][0] + + new_images.append(image) + else: + return image_processor(images, return_tensors='pt')['pixel_values'] + if all(x.shape == new_images[0].shape for x in new_images): + new_images = torch.stack(new_images, dim=0) + return new_images + +def process_images_demo(images, image_processor): + new_images = [] + # image_aspect_ratio = 'pad' + for image in images: + image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean)) + image = image_processor.preprocess(image,crop_size ={'height': 504, 'width': 504},size = {'shortest_edge': 504},return_tensors='pt')['pixel_values'][0] + # image = image_processor.preprocess(image,return_tensors='pt')['pixel_values'][0] + + new_images.append(image) + + if all(x.shape == new_images[0].shape for x in new_images): + new_images = torch.stack(new_images, dim=0) + return new_images + +def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None): + prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('')] + + def insert_separator(X, sep): + return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1] + + input_ids = [] + offset = 0 + if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id: + offset = 1 + input_ids.append(prompt_chunks[0][0]) + + for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)): + input_ids.extend(x[offset:]) + + if return_tensors is not None: + if return_tensors == 'pt': + return torch.tensor(input_ids, dtype=torch.long) + raise ValueError(f'Unsupported tensor type: {return_tensors}') + return input_ids + + +def get_model_name_from_path(model_path): + model_path = model_path.strip("/") + model_paths = model_path.split("/") + if model_paths[-1].startswith('checkpoint-'): + return model_paths[-2] + "_" + model_paths[-1] + else: + return model_paths[-1] + + + + +class KeywordsStoppingCriteria(StoppingCriteria): + def __init__(self, keywords, tokenizer, input_ids): + self.keywords = keywords + self.keyword_ids = [] + self.max_keyword_len = 0 + for keyword in keywords: + cur_keyword_ids = tokenizer(keyword).input_ids + if len(cur_keyword_ids) > 1 and cur_keyword_ids[0] == tokenizer.bos_token_id: + cur_keyword_ids = cur_keyword_ids[1:] + if len(cur_keyword_ids) > self.max_keyword_len: + self.max_keyword_len = len(cur_keyword_ids) + self.keyword_ids.append(torch.tensor(cur_keyword_ids)) + self.tokenizer = tokenizer + self.start_len = input_ids.shape[1] + + def __call__(self, output_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool: + # assert output_ids.shape[0] == 1, "Only support batch size 1 (yet)" # TODO + offset = min(output_ids.shape[1] - self.start_len, self.max_keyword_len) + self.keyword_ids = [keyword_id.to(output_ids.device) for keyword_id in self.keyword_ids] + for keyword_id in self.keyword_ids: + if (output_ids[0, -keyword_id.shape[0]:] == keyword_id).all(): + return True + outputs = self.tokenizer.batch_decode(output_ids[:, -offset:], skip_special_tokens=True)[0] + flag=False + for output in outputs: + + for keyword in self.keywords: + if keyword in output: + flag=True + return flag + return flag \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/model/__init__.py b/Geo/GeochatP-main/geochat/model/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..db33b7cbb9572efbb64a03d86a200b51ece2d29c --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/__init__.py @@ -0,0 +1,2 @@ +from .language_model.geochat_llama import GeoChatLlamaForCausalLM, GeoChatConfig +from .language_model.geochat_mpt import GeoChatMPTForCausalLM, GeoChatMPTConfig diff --git a/Geo/GeochatP-main/geochat/model/apply_delta.py b/Geo/GeochatP-main/geochat/model/apply_delta.py new file mode 100644 index 0000000000000000000000000000000000000000..e0a25da733baca083ff565c5dbc93b15cc314db0 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/apply_delta.py @@ -0,0 +1,48 @@ +""" +Usage: +python3 -m fastchat.model.apply_delta --base ~/model_weights/llama-7b --target ~/model_weights/vicuna-7b --delta lmsys/vicuna-7b-delta +""" +import argparse + +import torch +from tqdm import tqdm +from transformers import AutoTokenizer, AutoModelForCausalLM +from geochat import GeoChatLlamaForCausalLM + + +def apply_delta(base_model_path, target_model_path, delta_path): + print("Loading base model") + base = AutoModelForCausalLM.from_pretrained( + base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) + + print("Loading delta") + delta = LlavaLlamaForCausalLM.from_pretrained(delta_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) + delta_tokenizer = AutoTokenizer.from_pretrained(delta_path) + + print("Applying delta") + for name, param in tqdm(delta.state_dict().items(), desc="Applying delta"): + if name not in base.state_dict(): + assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model' + continue + if param.data.shape == base.state_dict()[name].shape: + param.data += base.state_dict()[name] + else: + assert name in ['model.embed_tokens.weight', 'lm_head.weight'], \ + f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}' + bparam = base.state_dict()[name] + param.data[:bparam.shape[0], :bparam.shape[1]] += bparam + + print("Saving target model") + delta.save_pretrained(target_model_path) + delta_tokenizer.save_pretrained(target_model_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--base-model-path", type=str, required=True) + parser.add_argument("--target-model-path", type=str, required=True) + parser.add_argument("--delta-path", type=str, required=True) + + args = parser.parse_args() + + apply_delta(args.base_model_path, args.target_model_path, args.delta_path) diff --git a/Geo/GeochatP-main/geochat/model/builder.py b/Geo/GeochatP-main/geochat/model/builder.py new file mode 100644 index 0000000000000000000000000000000000000000..98116cd10a4938185ca821b4fb98cfc0b7bdf6c7 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/builder.py @@ -0,0 +1,149 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +import os +import warnings +import shutil + +from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, BitsAndBytesConfig +import torch +from geochat.model import * +from geochat.constants import DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN + + +def load_pretrained_model(model_path, model_base, model_name, load_8bit=False, load_4bit=False, device_map="auto", device="cuda"): + kwargs = {"device_map": device_map} + + if load_8bit: + kwargs['load_in_8bit'] = True + elif load_4bit: + kwargs['load_in_4bit'] = True + kwargs['quantization_config'] = BitsAndBytesConfig( + load_in_4bit=True, + bnb_4bit_compute_dtype=torch.float16, + bnb_4bit_use_double_quant=True, + bnb_4bit_quant_type='nf4' + ) + else: + kwargs['torch_dtype'] = torch.float16 + + if 'geochat' in model_name.lower(): + # Load LLaVA model + if 'lora' in model_name.lower() and model_base is None: + warnings.warn('There is `lora` in model name but no `model_base` is provided. If you are loading a LoRA model, please provide the `model_base` argument. Detailed instruction: https://github.com/haotian-liu/LLaVA#launch-a-model-worker-lora-weights-unmerged.') + if 'lora' in model_name.lower() and model_base is not None: + lora_cfg_pretrained = AutoConfig.from_pretrained(model_path) + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) + print('Loading Geochat from base model...') + model = GeoChatLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=lora_cfg_pretrained, **kwargs) + token_num, tokem_dim = model.lm_head.out_features, model.lm_head.in_features + if model.lm_head.weight.shape[0] != token_num: + model.lm_head.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) + model.model.embed_tokens.weight = torch.nn.Parameter(torch.empty(token_num, tokem_dim, device=model.device, dtype=model.dtype)) + + print('Loading additional GeoChat weights...') + if os.path.exists(os.path.join(model_path, 'non_lora_trainables.bin')): + non_lora_trainables = torch.load(os.path.join(model_path, 'non_lora_trainables.bin'), map_location='cpu') + else: + # this is probably from HF Hub + from huggingface_hub import hf_hub_download + def load_from_hf(repo_id, filename, subfolder=None): + cache_file = hf_hub_download( + repo_id=repo_id, + filename=filename, + subfolder=subfolder) + return torch.load(cache_file, map_location='cpu') + non_lora_trainables = load_from_hf(model_path, 'non_lora_trainables.bin') + non_lora_trainables = {(k[11:] if k.startswith('base_model.') else k): v for k, v in non_lora_trainables.items()} + if any(k.startswith('model.model.') for k in non_lora_trainables): + non_lora_trainables = {(k[6:] if k.startswith('model.') else k): v for k, v in non_lora_trainables.items()} + model.load_state_dict(non_lora_trainables, strict=False) + + from peft import PeftModel + print('Loading LoRA weights...') + model = PeftModel.from_pretrained(model, model_path) + print('Merging LoRA weights...') + model = model.merge_and_unload() + print('Model is loaded...') + elif model_base is not None: + # this may be mm projector only + print('Loading GeoChat from base model...') + if 'mpt' in model_name.lower(): + if not os.path.isfile(os.path.join(model_path, 'configuration_mpt.py')): + shutil.copyfile(os.path.join(model_base, 'configuration_mpt.py'), os.path.join(model_path, 'configuration_mpt.py')) + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=True) + cfg_pretrained = AutoConfig.from_pretrained(model_path, trust_remote_code=True) + model = GeoChatMPTForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) + else: + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) + cfg_pretrained = AutoConfig.from_pretrained(model_path) + model = GeoChatLlamaForCausalLM.from_pretrained(model_base, low_cpu_mem_usage=True, config=cfg_pretrained, **kwargs) + + mm_projector_weights = torch.load(os.path.join(model_path, 'mm_projector.bin'), map_location='cpu') + mm_projector_weights = {k: v.to(torch.float16) for k, v in mm_projector_weights.items()} + model.load_state_dict(mm_projector_weights, strict=False) + else: + if 'mpt' in model_name.lower(): + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) + model = GeoChatMPTForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) + else: + print("Loading GeoChat......") + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) + model = GeoChatLlamaForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) + else: + # Load language model + if model_base is not None: + # PEFT model + from peft import PeftModel + tokenizer = AutoTokenizer.from_pretrained(model_base, use_fast=False) + model = AutoModelForCausalLM.from_pretrained(model_base, torch_dtype=torch.float16, low_cpu_mem_usage=True, device_map="auto") + print(f"Loading LoRA weights from {model_path}") + model = PeftModel.from_pretrained(model, model_path) + print(f"Merging weights") + model = model.merge_and_unload() + print('Convert to FP16...') + model.to(torch.float16) + else: + use_fast = False + if 'mpt' in model_name.lower(): + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=True) + model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, trust_remote_code=True, **kwargs) + else: + tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) + model = AutoModelForCausalLM.from_pretrained(model_path, low_cpu_mem_usage=True, **kwargs) + + image_processor = None + + if 'geochat' in model_name.lower(): + mm_use_im_start_end = getattr(model.config, "mm_use_im_start_end", False) + mm_use_im_patch_token = getattr(model.config, "mm_use_im_patch_token", True) + if mm_use_im_patch_token: + tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) + if mm_use_im_start_end: + tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) + model.resize_token_embeddings(len(tokenizer)) + + vision_tower = model.get_vision_tower() + if not vision_tower.is_loaded: + vision_tower.load_model() + vision_tower.to(device=device, dtype=torch.float16) + image_processor = vision_tower.image_processor + + if hasattr(model.config, "max_sequence_length"): + context_len = model.config.max_sequence_length + else: + context_len = 2048 + + return tokenizer, model, image_processor, context_len diff --git a/Geo/GeochatP-main/geochat/model/consolidate.py b/Geo/GeochatP-main/geochat/model/consolidate.py new file mode 100644 index 0000000000000000000000000000000000000000..d4759620463dd3f32afb5281b1492aac67dae71c --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/consolidate.py @@ -0,0 +1,29 @@ +""" +Usage: +python3 -m llava.model.consolidate --src ~/model_weights/llava-7b --dst ~/model_weights/llava-7b_consolidate +""" +import argparse + +import torch +from transformers import AutoTokenizer, AutoModelForCausalLM +from geochat.model import * +from geochat.model.utils import auto_upgrade + + +def consolidate_ckpt(src_path, dst_path): + print("Loading model") + auto_upgrade(src_path) + src_model = AutoModelForCausalLM.from_pretrained(src_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) + src_tokenizer = AutoTokenizer.from_pretrained(src_path, use_fast=False) + src_model.save_pretrained(dst_path) + src_tokenizer.save_pretrained(dst_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--src", type=str, required=True) + parser.add_argument("--dst", type=str, required=True) + + args = parser.parse_args() + + consolidate_ckpt(args.src, args.dst) diff --git a/Geo/GeochatP-main/geochat/model/geochat_arch.py b/Geo/GeochatP-main/geochat/model/geochat_arch.py new file mode 100644 index 0000000000000000000000000000000000000000..1dceb114aa3c941da9dfe0012631a8aef049a98b --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/geochat_arch.py @@ -0,0 +1,262 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from abc import ABC, abstractmethod + +import torch +import torch.nn as nn + +from .multimodal_encoder.builder import build_vision_tower +from .multimodal_projector.builder import build_vision_projector + +from geochat.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_PATCH_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN + + +class GeoChatMetaModel: + + def __init__(self, config): + super(GeoChatMetaModel, self).__init__(config) + + if hasattr(config, "mm_vision_tower"): + self.vision_tower = build_vision_tower(config, delay_load=True) + self.mm_projector = build_vision_projector(config) + + def get_vision_tower(self): + vision_tower = getattr(self, 'vision_tower', None) + if type(vision_tower) is list: + vision_tower = vision_tower[0] + return vision_tower + + def initialize_vision_modules(self, model_args, fsdp=None): + vision_tower = model_args.vision_tower + mm_vision_select_layer = model_args.mm_vision_select_layer + mm_vision_select_feature = model_args.mm_vision_select_feature + pretrain_mm_mlp_adapter = model_args.pretrain_mm_mlp_adapter + + self.config.mm_vision_tower = vision_tower + + if self.get_vision_tower() is None: + vision_tower = build_vision_tower(model_args) + + if fsdp is not None and len(fsdp) > 0: + self.vision_tower = [vision_tower] + else: + self.vision_tower = vision_tower + else: + if fsdp is not None and len(fsdp) > 0: + vision_tower = self.vision_tower[0] + else: + vision_tower = self.vision_tower + vision_tower.load_model() + + self.config.use_mm_proj = True + self.config.mm_projector_type = getattr(model_args, 'mm_projector_type', 'linear') + self.config.mm_hidden_size = vision_tower.hidden_size + self.config.mm_vision_select_layer = mm_vision_select_layer + self.config.mm_vision_select_feature = mm_vision_select_feature + + if getattr(self, 'mm_projector', None) is None: + self.mm_projector = build_vision_projector(self.config) + # print(mm_projector) + + + if pretrain_mm_mlp_adapter is not None: + mm_projector_weights = torch.load(pretrain_mm_mlp_adapter, map_location='cpu') + + def get_w(weights, keyword): + return {k.split(keyword + '.')[1]: v for k, v in weights.items() if keyword in k} + + self.mm_projector.load_state_dict(get_w(mm_projector_weights, 'mm_projector')) + + + + +class GeoChatMetaForCausalLM(ABC): + + @abstractmethod + def get_model(self): + pass + + def get_vision_tower(self): + return self.get_model().get_vision_tower() + + def encode_images(self, images): + image_features = self.get_model().get_vision_tower()(images) + image_features = self.get_model().mm_projector(image_features) + return image_features + + def prepare_inputs_labels_for_multimodal( + self, input_ids, attention_mask, past_key_values, labels, images + ): + vision_tower = self.get_vision_tower() + if vision_tower is None or images is None or input_ids.shape[1] == 1: + if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1: + attention_mask = torch.ones((attention_mask.shape[0], past_key_values[-1][-1].shape[-2] + 1), dtype=attention_mask.dtype, device=attention_mask.device) + return input_ids, attention_mask, past_key_values, None, labels + + if type(images) is list or images.ndim == 5: + concat_images = torch.cat([image for image in images], dim=0) + image_features = self.encode_images(concat_images) + split_sizes = [image.shape[0] for image in images] + image_features = torch.split(image_features, split_sizes, dim=0) + image_features = [x.flatten(0, 1) for x in image_features] + else: + image_features = self.encode_images(images) + + new_input_embeds = [] + new_labels = [] if labels is not None else None + cur_image_idx = 0 + for batch_idx, cur_input_ids in enumerate(input_ids): + if (cur_input_ids == IMAGE_TOKEN_INDEX).sum() == 0: + # multimodal LLM, but the current sample is not multimodal + # FIXME: this is a hacky fix, for deepspeed zero3 to work + half_len = cur_input_ids.shape[0] // 2 + cur_image_features = image_features[cur_image_idx] + cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids[:half_len]) + cur_input_embeds_2 = self.get_model().embed_tokens(cur_input_ids[half_len:]) + cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0], cur_input_embeds_2], dim=0) + new_input_embeds.append(cur_input_embeds) + if labels is not None: + new_labels.append(labels[batch_idx]) + cur_image_idx += 1 + continue + image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] + cur_new_input_embeds = [] + if labels is not None: + cur_labels = labels[batch_idx] + cur_new_labels = [] + assert cur_labels.shape == cur_input_ids.shape + while image_token_indices.numel() > 0: + cur_image_features = image_features[cur_image_idx] + image_token_start = image_token_indices[0] + if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start-1]).detach()) + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start-1:image_token_start])) + cur_new_input_embeds.append(cur_image_features) + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[image_token_start+1:image_token_start+2])) + if labels is not None: + cur_new_labels.append(cur_labels[:image_token_start]) + cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) + cur_new_labels.append(cur_labels[image_token_start:image_token_start+1]) + cur_labels = cur_labels[image_token_start+2:] + else: + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids[:image_token_start])) + cur_new_input_embeds.append(cur_image_features) + if labels is not None: + cur_new_labels.append(cur_labels[:image_token_start]) + cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=labels.device, dtype=labels.dtype)) + cur_labels = cur_labels[image_token_start+1:] + cur_image_idx += 1 + if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): + cur_input_ids = cur_input_ids[image_token_start+2:] + else: + cur_input_ids = cur_input_ids[image_token_start+1:] + image_token_indices = torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0] + if cur_input_ids.numel() > 0: + if getattr(self.config, 'tune_mm_mlp_adapter', False) and getattr(self.config, 'mm_use_im_start_end', False): + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids).detach()) + else: + cur_new_input_embeds.append(self.get_model().embed_tokens(cur_input_ids)) + if labels is not None: + cur_new_labels.append(cur_labels) + cur_new_input_embeds = [x.to(device=self.device) for x in cur_new_input_embeds] + cur_new_input_embeds = torch.cat(cur_new_input_embeds, dim=0) + new_input_embeds.append(cur_new_input_embeds) + if labels is not None: + cur_new_labels = torch.cat(cur_new_labels, dim=0) + new_labels.append(cur_new_labels) + + if any(x.shape != new_input_embeds[0].shape for x in new_input_embeds): + max_len = max(x.shape[0] for x in new_input_embeds) + + new_input_embeds_align = [] + for cur_new_embed in new_input_embeds: + cur_new_embed = torch.cat((cur_new_embed, torch.zeros((max_len - cur_new_embed.shape[0], cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)), dim=0) + new_input_embeds_align.append(cur_new_embed) + new_input_embeds = torch.stack(new_input_embeds_align, dim=0) + + if labels is not None: + new_labels_align = [] + _new_labels = new_labels + for cur_new_label in new_labels: + cur_new_label = torch.cat((cur_new_label, torch.full((max_len - cur_new_label.shape[0],), IGNORE_INDEX, dtype=cur_new_label.dtype, device=cur_new_label.device)), dim=0) + new_labels_align.append(cur_new_label) + new_labels = torch.stack(new_labels_align, dim=0) + + if attention_mask is not None: + new_attention_mask = [] + for cur_attention_mask, cur_new_labels, cur_new_labels_align in zip(attention_mask, _new_labels, new_labels): + new_attn_mask_pad_left = torch.full((cur_new_labels.shape[0] - labels.shape[1],), True, dtype=attention_mask.dtype, device=attention_mask.device) + new_attn_mask_pad_right = torch.full((cur_new_labels_align.shape[0] - cur_new_labels.shape[0],), False, dtype=attention_mask.dtype, device=attention_mask.device) + cur_new_attention_mask = torch.cat((new_attn_mask_pad_left, cur_attention_mask, new_attn_mask_pad_right), dim=0) + new_attention_mask.append(cur_new_attention_mask) + attention_mask = torch.stack(new_attention_mask, dim=0) + assert attention_mask.shape == new_labels.shape + else: + new_input_embeds = torch.stack(new_input_embeds, dim=0) + if labels is not None: + new_labels = torch.stack(new_labels, dim=0) + + if attention_mask is not None: + new_attn_mask_pad_left = torch.full((attention_mask.shape[0], new_input_embeds.shape[1] - input_ids.shape[1]), True, dtype=attention_mask.dtype, device=attention_mask.device) + attention_mask = torch.cat((new_attn_mask_pad_left, attention_mask), dim=1) + assert attention_mask.shape == new_input_embeds.shape[:2] + + return None, attention_mask, past_key_values, new_input_embeds, new_labels + + def initialize_vision_tokenizer(self, model_args, tokenizer): + if model_args.mm_use_im_patch_token: + tokenizer.add_tokens([DEFAULT_IMAGE_PATCH_TOKEN], special_tokens=True) + self.resize_token_embeddings(len(tokenizer)) + + if model_args.mm_use_im_start_end: + num_new_tokens = tokenizer.add_tokens([DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN], special_tokens=True) + self.resize_token_embeddings(len(tokenizer)) + + if num_new_tokens > 0: + input_embeddings = self.get_input_embeddings().weight.data + output_embeddings = self.get_output_embeddings().weight.data + + input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + + input_embeddings[-num_new_tokens:] = input_embeddings_avg + output_embeddings[-num_new_tokens:] = output_embeddings_avg + + if model_args.tune_mm_mlp_adapter: + for p in self.get_input_embeddings().parameters(): + p.requires_grad = True + for p in self.get_output_embeddings().parameters(): + p.requires_grad = False + + if model_args.pretrain_mm_mlp_adapter: + mm_projector_weights = torch.load(model_args.pretrain_mm_mlp_adapter, map_location='cpu') + print(mm_projector_weights) + embed_tokens_weight = mm_projector_weights['model.embed_tokens.weight'] + assert num_new_tokens == 2 + if input_embeddings.shape == embed_tokens_weight.shape: + input_embeddings[-num_new_tokens:] = embed_tokens_weight[-num_new_tokens:] + elif embed_tokens_weight.shape[0] == num_new_tokens: + input_embeddings[-num_new_tokens:] = embed_tokens_weight + else: + raise ValueError(f"Unexpected embed_tokens_weight shape. Pretrained: {embed_tokens_weight.shape}. Current: {input_embeddings.shape}. Numer of new tokens: {num_new_tokens}.") + elif model_args.mm_use_im_patch_token: + if model_args.tune_mm_mlp_adapter: + for p in self.get_input_embeddings().parameters(): + p.requires_grad = False + for p in self.get_output_embeddings().parameters(): + p.requires_grad = False diff --git a/Geo/GeochatP-main/geochat/model/language_model/geochat_llama.py b/Geo/GeochatP-main/geochat/model/language_model/geochat_llama.py new file mode 100644 index 0000000000000000000000000000000000000000..2bbdb028e99b2aaf23245d2c3138e8833a2f2b81 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/geochat_llama.py @@ -0,0 +1,140 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import List, Optional, Tuple, Union + +import torch +import torch.nn as nn +from torch.nn import CrossEntropyLoss + +from transformers import AutoConfig, AutoModelForCausalLM, \ + LlamaConfig, LlamaModel, LlamaForCausalLM + +from transformers.modeling_outputs import CausalLMOutputWithPast + +from ..geochat_arch import GeoChatMetaModel, GeoChatMetaForCausalLM + + +class GeoChatConfig(LlamaConfig): + model_type = "geochat" + + +class GeoChatLlamaModel(GeoChatMetaModel, LlamaModel): + config_class = GeoChatConfig + + def __init__(self, config: LlamaConfig): + super(GeoChatLlamaModel, self).__init__(config) + + +class GeoChatLlamaForCausalLM(LlamaForCausalLM, GeoChatMetaForCausalLM): + config_class = GeoChatConfig + + def __init__(self, config): + super(LlamaForCausalLM, self).__init__(config) + self.model = GeoChatLlamaModel(config) + + self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) + + # Initialize weights and apply final processing + self.post_init() + + def get_model(self): + return self.model + + def forward( + self, + input_ids: torch.LongTensor = None, + attention_mask: Optional[torch.Tensor] = None, + past_key_values: Optional[List[torch.FloatTensor]] = None, + inputs_embeds: Optional[torch.FloatTensor] = None, + labels: Optional[torch.LongTensor] = None, + use_cache: Optional[bool] = None, + output_attentions: Optional[bool] = None, + output_hidden_states: Optional[bool] = None, + images: Optional[torch.FloatTensor] = None, + return_dict: Optional[bool] = None, + ) -> Union[Tuple, CausalLMOutputWithPast]: + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = ( + output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + ) + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + + input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) + + # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn) + outputs = self.model( + input_ids=input_ids, + attention_mask=attention_mask, + past_key_values=past_key_values, + inputs_embeds=inputs_embeds, + use_cache=use_cache, + output_attentions=output_attentions, + output_hidden_states=output_hidden_states, + return_dict=return_dict + ) + + hidden_states = outputs[0] + logits = self.lm_head(hidden_states) + + loss = None + if labels is not None: + # Shift so that tokens < n predict n + shift_logits = logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + # Flatten the tokens + loss_fct = CrossEntropyLoss() + shift_logits = shift_logits.view(-1, self.config.vocab_size) + shift_labels = shift_labels.view(-1) + # Enable model/pipeline parallelism + shift_labels = shift_labels.to(shift_logits.device) + loss = loss_fct(shift_logits, shift_labels) + + if not return_dict: + output = (logits,) + outputs[1:] + return (loss,) + output if loss is not None else output + + return CausalLMOutputWithPast( + loss=loss, + logits=logits, + past_key_values=outputs.past_key_values, + hidden_states=outputs.hidden_states, + attentions=outputs.attentions, + ) + + def prepare_inputs_for_generation( + self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs + ): + if past_key_values: + input_ids = input_ids[:, -1:] + + # if `inputs_embeds` are passed, we only want to use them in the 1st generation step + if inputs_embeds is not None and past_key_values is None: + model_inputs = {"inputs_embeds": inputs_embeds} + else: + model_inputs = {"input_ids": input_ids} + + model_inputs.update( + { + "past_key_values": past_key_values, + "use_cache": kwargs.get("use_cache"), + "attention_mask": attention_mask, + "images": kwargs.get("images", None), + } + ) + return model_inputs + +AutoConfig.register("geochat", GeoChatConfig) +AutoModelForCausalLM.register(GeoChatConfig, GeoChatLlamaForCausalLM) diff --git a/Geo/GeochatP-main/geochat/model/language_model/geochat_mpt.py b/Geo/GeochatP-main/geochat/model/language_model/geochat_mpt.py new file mode 100644 index 0000000000000000000000000000000000000000..b727443f2b24c1090d6749bda930d9a228c6501e --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/geochat_mpt.py @@ -0,0 +1,113 @@ +# Copyright 2023 Haotian Liu +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + + +from typing import List, Optional, Tuple +import warnings + +import torch +import torch.nn.functional as F +import math + +from transformers import AutoConfig, AutoModelForCausalLM +from transformers.modeling_outputs import CausalLMOutputWithPast + +from .mpt.modeling_mpt import MPTConfig, MPTForCausalLM, MPTModel +from geochat.model.geochat_arch import GeoChatMetaModel, GeoChatMetaForCausalLM + + +class GeoChatMPTConfig(MPTConfig): + model_type = "geochat_mpt" + + +class GeoChatMPTModel(GeoChatMetaModel, MPTModel): + config_class = GeoChatMPTConfig + + def __init__(self, config: MPTConfig): + config.hidden_size = config.d_model + super(GeoChatMPTModel, self).__init__(config) + + def embed_tokens(self, x): + return self.wte(x) + + +class GeoChatMPTForCausalLM(MPTForCausalLM, GeoChatMetaForCausalLM): + config_class = GeoChatMPTConfig + supports_gradient_checkpointing = True + + def __init__(self, config): + super(MPTForCausalLM, self).__init__(config) + + if not config.tie_word_embeddings: + raise ValueError('MPTForCausalLM only supports tied word embeddings') + self.transformer = GeoChatMPTModel(config) + self.logit_scale = None + if config.logit_scale is not None: + logit_scale = config.logit_scale + if isinstance(logit_scale, str): + if logit_scale == 'inv_sqrt_d_model': + logit_scale = 1 / math.sqrt(config.d_model) + else: + raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.") + self.logit_scale = logit_scale + + def get_model(self): + return self.transformer + + def _set_gradient_checkpointing(self, module, value=False): + if isinstance(module, GeoChatMPTModel): + module.gradient_checkpointing = value + + def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, images=None): + return_dict = return_dict if return_dict is not None else self.config.return_dict + use_cache = use_cache if use_cache is not None else self.config.use_cache + + input_ids, attention_mask, past_key_values, inputs_embeds, labels = self.prepare_inputs_labels_for_multimodal(input_ids, attention_mask, past_key_values, labels, images) + outputs = self.transformer(input_ids=input_ids, inputs_embeds=inputs_embeds, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache) + # FIXME: this is a hack to fix the multiple gpu inference issue in https://github.com/haotian-liu/LLaVA/issues/338 + logits = F.linear(outputs.last_hidden_state.to(self.transformer.wte.weight.device), self.transformer.wte.weight) + if self.logit_scale is not None: + if self.logit_scale == 0: + warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.') + logits *= self.logit_scale + loss = None + if labels is not None: + labels = torch.roll(labels, shifts=-1) + labels[:, -1] = -100 + loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1)) + return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): + if inputs_embeds is not None: + raise NotImplementedError('inputs_embeds is not implemented for MPT yet') + attention_mask = kwargs['attention_mask'].bool() + if attention_mask[:, -1].sum() != attention_mask.shape[0]: + raise NotImplementedError('MPT does not support generation with right padding.') + if self.transformer.attn_uses_sequence_id and self.training: + sequence_id = torch.zeros_like(input_ids[:1]) + else: + sequence_id = None + if past_key_values is not None: + input_ids = input_ids[:, -1].unsqueeze(-1) + if self.transformer.prefix_lm: + prefix_mask = torch.ones_like(attention_mask) + if kwargs.get('use_cache') == False: + raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.') + else: + prefix_mask = None + return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True), "images": kwargs.get("images", None)} + + +AutoConfig.register("geochat_mpt", GeoChatMPTConfig) +AutoModelForCausalLM.register(GeoChatMPTConfig, GeoChatMPTForCausalLM) diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-310.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d472ac71a3adef92b30ff6c3cd66612208a86124 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-310.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-311.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b2b26db598b705d824f6e485c84d447d7105febc Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-311.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-38.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b0cf83178efd6a9bd29ef9a23bda80e74a2cf077 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-38.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-39.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..a2f1f9be582dbde7c0e8c365b49d15955bd0c989 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/adapt_tokenizer.cpython-39.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-310.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e9748eec9c72c48fceabe7a1a345a71a69c44f8c Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-310.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-311.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2d9b28c167db60a601262b8332eec83dce0e3658 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-311.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-38.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5cb9488692d62765d9adc10395ed145d426d7870 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-38.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-39.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ab13948a1f74e91df42c6a0e27dbe3c6a4925d66 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/attention.cpython-39.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-310.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b8705051ab4560b8865f53935480b68090e0dea9 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-310.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-311.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4fa2d9c14e99c8ea8e9c37a71cf243556eb8d3a9 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-311.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-38.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..5fc5214c1bb2a152bc7d3167e181f77968f86aa0 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-38.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-39.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..80211e874df8095b2d31815b6380de62c1f93320 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/blocks.cpython-39.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-310.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..dce1c44a218123d77ff8731a57e04fa74b60cacc Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-310.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-311.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..56fbdacbdf9ba399d6f08556e8ba9946209a5be2 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-311.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-38.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8d75d07e4724e50450c5d88b778d57edbc5ac000 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-38.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-39.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..9518c5c23e55955f04b2b33a912476ad97c502d0 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/configuration_mpt.cpython-39.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-310.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..01e98dd82b4aadd96bae31a2c3ca7aa231875a97 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-310.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-311.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ceb2189033384f4aab4a32ec737072ac6e3bc0ee Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-311.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-38.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..7334f489136c713548d398cc5d6ac8b25c7b52ce Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-38.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-39.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..ae8337277b8cc2e5a936e4717851a209f4f0a4f2 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/custom_embedding.cpython-39.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-310.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..8750f4ab17c8af83daa3cfe597c151f36fbc9407 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-310.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-311.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..bccfd0c611a458de2b8e48e37fe7aa19c71a491c Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-311.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-38.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b933d0d5d7bc10cd438daf44e78bb8e9bc2327a5 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-38.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-39.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..d2b2118754c64a53bbd4cbc037bc9dfa2f59e179 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/flash_attn_triton.cpython-39.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-310.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..1c90a9b041f1aaba3a1094918011aab069882d86 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-310.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-311.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..2c786ca32935464ebc7aa85abc3ede3ab31ea94a Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-311.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-38.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..136772b8efd0b45b871f252d38ab4f344e575ce1 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-38.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-39.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e6b2caf4feca6764af0e0bafefd86330c86626ba Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/hf_prefixlm_converter.cpython-39.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-310.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..e22f841b0fe7bdedd388ace94bdff0ab38612d11 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-310.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-311.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..642f77fb30a4e636b001508cce1c3214f6d712c6 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-311.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-38.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4205535121779b327e58c1b4ed7d507f913c2e2e Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-38.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-39.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3ba211faf47d2064ab0c92deae944ee5846ea75e Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/meta_init_context.cpython-39.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-310.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b00c4a867b7a80ed457bb7d3a531a988fd465f0a Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-310.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-311.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4bed10200787263ff77276a5cd192e17e075753a Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-311.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-38.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..440ff7d59db6c9631c6ae684623b3348027e80be Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-38.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-39.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..f207765f7d338da12a904c7e5389dd47f5da4acd Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/modeling_mpt.cpython-39.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-310.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..b01c5d1988a10c95e0c0e6238b61c0ec74763942 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-310.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-311.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..727afa0303ca2d872d0d78706b04788fa491d647 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-311.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-38.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..4acaf7784a3b337405f75898c624944013da9ec4 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-38.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-39.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..40bba1c0b74cc5071270b5ff8e030b20d9493cec Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/norm.cpython-39.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-310.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-310.pyc new file mode 100644 index 0000000000000000000000000000000000000000..3e56b77dd6eef0157bae75894206e49b253cdc36 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-310.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-311.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-311.pyc new file mode 100644 index 0000000000000000000000000000000000000000..051506c95669fd015d08e9d2cee61b6e61399ad5 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-311.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-38.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-38.pyc new file mode 100644 index 0000000000000000000000000000000000000000..10486ea83c824c489d04efe54314b7b448f5d0a3 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-38.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-39.pyc b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-39.pyc new file mode 100644 index 0000000000000000000000000000000000000000..efe7359f77b9f0fd3bb79c1b0d94ff20d316c915 Binary files /dev/null and b/Geo/GeochatP-main/geochat/model/language_model/mpt/__pycache__/param_init_fns.cpython-39.pyc differ diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/adapt_tokenizer.py b/Geo/GeochatP-main/geochat/model/language_model/mpt/adapt_tokenizer.py new file mode 100644 index 0000000000000000000000000000000000000000..e640c157e8f5581953c518df0611a423225ef598 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/mpt/adapt_tokenizer.py @@ -0,0 +1,41 @@ +from typing import Union +from transformers import AutoTokenizer, PreTrainedTokenizer, PreTrainedTokenizerFast +Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] +NUM_SENTINEL_TOKENS: int = 100 + +def adapt_tokenizer_for_denoising(tokenizer: Tokenizer): + """Adds sentinel tokens and padding token (if missing). + + Expands the tokenizer vocabulary to include sentinel tokens + used in mixture-of-denoiser tasks as well as a padding token. + + All added tokens are added as special tokens. No tokens are + added if sentinel tokens and padding token already exist. + """ + sentinels_to_add = [f'' for i in range(NUM_SENTINEL_TOKENS)] + tokenizer.add_tokens(sentinels_to_add, special_tokens=True) + if tokenizer.pad_token is None: + tokenizer.add_tokens('', special_tokens=True) + tokenizer.pad_token = '' + assert tokenizer.pad_token_id is not None + sentinels = ''.join([f'' for i in range(NUM_SENTINEL_TOKENS)]) + _sentinel_token_ids = tokenizer(sentinels, add_special_tokens=False).input_ids + tokenizer.sentinel_token_ids = _sentinel_token_ids + +class AutoTokenizerForMOD(AutoTokenizer): + """AutoTokenizer + Adaptation for MOD. + + A simple wrapper around AutoTokenizer to make instantiating + an MOD-adapted tokenizer a bit easier. + + MOD-adapted tokenizers have sentinel tokens (e.g., ), + a padding token, and a property to get the token ids of the + sentinel tokens. + """ + + @classmethod + def from_pretrained(cls, *args, **kwargs): + """See `AutoTokenizer.from_pretrained` docstring.""" + tokenizer = super().from_pretrained(*args, **kwargs) + adapt_tokenizer_for_denoising(tokenizer) + return tokenizer \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/attention.py b/Geo/GeochatP-main/geochat/model/language_model/mpt/attention.py new file mode 100644 index 0000000000000000000000000000000000000000..b5543ef21c16e98fb10b2cea260ef56892362860 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/mpt/attention.py @@ -0,0 +1,300 @@ +"""Attention layers.""" +import math +import warnings +from typing import Optional +import torch +import torch.nn as nn +from einops import rearrange +from packaging import version +from torch import nn +from .norm import LPLayerNorm + +def _reset_is_causal(num_query_tokens: int, num_key_tokens: int, original_is_causal: bool): + if original_is_causal and num_query_tokens != num_key_tokens: + if num_query_tokens != 1: + raise NotImplementedError('MPT does not support query and key with different number of tokens, unless number of query tokens is 1.') + else: + return False + return original_is_causal + +def scaled_multihead_dot_product_attention(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False): + q = rearrange(query, 'b s (h d) -> b h s d', h=n_heads) + kv_n_heads = 1 if multiquery else n_heads + k = rearrange(key, 'b s (h d) -> b h d s', h=kv_n_heads) + v = rearrange(value, 'b s (h d) -> b h s d', h=kv_n_heads) + if past_key_value is not None: + if len(past_key_value) != 0: + k = torch.cat([past_key_value[0], k], dim=3) + v = torch.cat([past_key_value[1], v], dim=2) + past_key_value = (k, v) + (b, _, s_q, d) = q.shape + s_k = k.size(-1) + if softmax_scale is None: + softmax_scale = 1 / math.sqrt(d) + attn_weight = q.matmul(k) * softmax_scale + if attn_bias is not None: + _s_q = max(0, attn_bias.size(2) - s_q) + _s_k = max(0, attn_bias.size(3) - s_k) + attn_bias = attn_bias[:, :, _s_q:, _s_k:] + if attn_bias.size(-1) != 1 and attn_bias.size(-1) != s_k or (attn_bias.size(-2) != 1 and attn_bias.size(-2) != s_q): + raise RuntimeError(f'attn_bias (shape: {attn_bias.shape}) is expected to broadcast to shape: {attn_weight.shape}.') + attn_weight = attn_weight + attn_bias + min_val = torch.finfo(q.dtype).min + if key_padding_mask is not None: + if attn_bias is not None: + warnings.warn('Propogating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unneccessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.') + attn_weight = attn_weight.masked_fill(~key_padding_mask.view((b, 1, 1, s_k)), min_val) + if is_causal and (not q.size(2) == 1): + s = max(s_q, s_k) + causal_mask = attn_weight.new_ones(s, s, dtype=torch.float16) + causal_mask = causal_mask.tril() + causal_mask = causal_mask.to(torch.bool) + causal_mask = ~causal_mask + causal_mask = causal_mask[-s_q:, -s_k:] + attn_weight = attn_weight.masked_fill(causal_mask.view(1, 1, s_q, s_k), min_val) + attn_weight = torch.softmax(attn_weight, dim=-1) + if dropout_p: + attn_weight = torch.nn.functional.dropout(attn_weight, p=dropout_p, training=training, inplace=True) + out = attn_weight.to(v.dtype).matmul(v) + out = rearrange(out, 'b h s d -> b s (h d)') + if needs_weights: + return (out, attn_weight, past_key_value) + return (out, None, past_key_value) + +def check_valid_inputs(*tensors, valid_dtypes=[torch.float16, torch.bfloat16]): + for tensor in tensors: + if tensor.dtype not in valid_dtypes: + raise TypeError(f'tensor.dtype={tensor.dtype!r} must be in valid_dtypes={valid_dtypes!r}.') + if not tensor.is_cuda: + raise TypeError(f'Inputs must be cuda tensors (tensor.is_cuda={tensor.is_cuda!r}).') + +def flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False): + try: + from flash_attn import bert_padding, flash_attn_interface + except: + raise RuntimeError('Please install flash-attn==1.0.3.post0') + check_valid_inputs(query, key, value) + if past_key_value is not None: + if len(past_key_value) != 0: + key = torch.cat([past_key_value[0], key], dim=1) + value = torch.cat([past_key_value[1], value], dim=1) + past_key_value = (key, value) + if attn_bias is not None: + _s_q = max(0, attn_bias.size(2) - query.size(1)) + _s_k = max(0, attn_bias.size(3) - key.size(1)) + attn_bias = attn_bias[:, :, _s_q:, _s_k:] + if attn_bias is not None: + raise NotImplementedError(f'attn_bias not implemented for flash attn.') + (batch_size, seqlen) = query.shape[:2] + if key_padding_mask is None: + key_padding_mask = torch.ones_like(key[:, :, 0], dtype=torch.bool) + query_padding_mask = key_padding_mask[:, -query.size(1):] + (query_unpad, indices_q, cu_seqlens_q, max_seqlen_q) = bert_padding.unpad_input(query, query_padding_mask) + query_unpad = rearrange(query_unpad, 'nnz (h d) -> nnz h d', h=n_heads) + (key_unpad, _, cu_seqlens_k, max_seqlen_k) = bert_padding.unpad_input(key, key_padding_mask) + key_unpad = rearrange(key_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads) + (value_unpad, _, _, _) = bert_padding.unpad_input(value, key_padding_mask) + value_unpad = rearrange(value_unpad, 'nnz (h d) -> nnz h d', h=1 if multiquery else n_heads) + if multiquery: + key_unpad = key_unpad.expand(key_unpad.size(0), n_heads, key_unpad.size(-1)) + value_unpad = value_unpad.expand(value_unpad.size(0), n_heads, value_unpad.size(-1)) + dropout_p = dropout_p if training else 0.0 + reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) + output_unpad = flash_attn_interface.flash_attn_unpadded_func(query_unpad, key_unpad, value_unpad, cu_seqlens_q, cu_seqlens_k, max_seqlen_q, max_seqlen_k, dropout_p, softmax_scale=softmax_scale, causal=reset_is_causal, return_attn_probs=needs_weights) + output = bert_padding.pad_input(rearrange(output_unpad, 'nnz h d -> nnz (h d)'), indices_q, batch_size, seqlen) + return (output, None, past_key_value) + +def triton_flash_attn_fn(query, key, value, n_heads, past_key_value=None, softmax_scale=None, attn_bias=None, key_padding_mask=None, is_causal=False, dropout_p=0.0, training=False, needs_weights=False, multiquery=False): + try: + from .flash_attn_triton import flash_attn_func + except: + _installed = False + if version.parse(torch.__version__) < version.parse('2.0.0'): + _installed = True + try: + from flash_attn.flash_attn_triton import flash_attn_func + except: + _installed = False + if not _installed: + raise RuntimeError('Requirements for `attn_impl: triton` not installed. Either (1) have a CUDA-compatible GPU and `pip install .[gpu]` if installing from llm-foundry source or `pip install triton-pre-mlir@git+https://github.com/vchiley/triton.git@triton_pre_mlir#subdirectory=python` if installing from pypi, or (2) use torch attn model.attn_config.attn_impl=torch (torch attn_impl will be slow). Note: (1) requires you have CMake and PyTorch already installed.') + check_valid_inputs(query, key, value) + if past_key_value is not None: + if len(past_key_value) != 0: + key = torch.cat([past_key_value[0], key], dim=1) + value = torch.cat([past_key_value[1], value], dim=1) + past_key_value = (key, value) + if attn_bias is not None: + _s_q = max(0, attn_bias.size(2) - query.size(1)) + _s_k = max(0, attn_bias.size(3) - key.size(1)) + attn_bias = attn_bias[:, :, _s_q:, _s_k:] + if dropout_p: + raise NotImplementedError(f'Dropout not implemented for attn_impl: triton.') + if needs_weights: + raise NotImplementedError(f'attn_impl: triton cannot return attn weights.') + if key_padding_mask is not None: + warnings.warn('Propagating key_padding_mask to the attention module ' + 'and applying it within the attention module can cause ' + 'unnecessary computation/memory usage. Consider integrating ' + 'into attn_bias once and passing that to each attention ' + 'module instead.') + (b_size, s_k) = key_padding_mask.shape[:2] + if attn_bias is None: + attn_bias = query.new_zeros(b_size, 1, 1, s_k) + attn_bias = attn_bias.masked_fill(~key_padding_mask.view((b_size, 1, 1, s_k)), torch.finfo(query.dtype).min) + query = rearrange(query, 'b s (h d) -> b s h d', h=n_heads) + key = rearrange(key, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads) + value = rearrange(value, 'b s (h d) -> b s h d', h=1 if multiquery else n_heads) + if multiquery: + key = key.expand(*key.shape[:2], n_heads, key.size(-1)) + value = value.expand(*value.shape[:2], n_heads, value.size(-1)) + reset_is_causal = _reset_is_causal(query.size(1), key.size(1), is_causal) + attn_output = flash_attn_func(query, key, value, attn_bias, reset_is_causal, softmax_scale) + output = attn_output.view(*attn_output.shape[:2], -1) + return (output, None, past_key_value) + +class MultiheadAttention(nn.Module): + """Multi-head self attention. + + Using torch or triton attention implementation enables user to also use + additive bias. + """ + + def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, verbose: int=0, device: Optional[str]=None): + super().__init__() + self.attn_impl = attn_impl + self.clip_qkv = clip_qkv + self.qk_ln = qk_ln + self.d_model = d_model + self.n_heads = n_heads + self.softmax_scale = softmax_scale + if self.softmax_scale is None: + self.softmax_scale = 1 / math.sqrt(self.d_model / self.n_heads) + self.attn_dropout_p = attn_pdrop + self.Wqkv = nn.Linear(self.d_model, 3 * self.d_model, device=device) + fuse_splits = (d_model, 2 * d_model) + self.Wqkv._fused = (0, fuse_splits) + if self.qk_ln: + layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm + self.q_ln = layernorm_class(self.d_model, device=device) + self.k_ln = layernorm_class(self.d_model, device=device) + if self.attn_impl == 'flash': + self.attn_fn = flash_attn_fn + elif self.attn_impl == 'triton': + self.attn_fn = triton_flash_attn_fn + if verbose: + warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.') + elif self.attn_impl == 'torch': + self.attn_fn = scaled_multihead_dot_product_attention + if torch.cuda.is_available() and verbose: + warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.') + else: + raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') + self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) + self.out_proj._is_residual = True + + def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False): + qkv = self.Wqkv(x) + if self.clip_qkv: + qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) + (query, key, value) = qkv.chunk(3, dim=2) + key_padding_mask = attention_mask + if self.qk_ln: + dtype = query.dtype + query = self.q_ln(query).to(dtype) + key = self.k_ln(key).to(dtype) + (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights) + return (self.out_proj(context), attn_weights, past_key_value) + +class MultiQueryAttention(nn.Module): + """Multi-Query self attention. + + Using torch or triton attention implementation enables user to also use + additive bias. + """ + + def __init__(self, d_model: int, n_heads: int, attn_impl: str='triton', clip_qkv: Optional[float]=None, qk_ln: bool=False, softmax_scale: Optional[float]=None, attn_pdrop: float=0.0, low_precision_layernorm: bool=False, verbose: int=0, device: Optional[str]=None): + super().__init__() + self.attn_impl = attn_impl + self.clip_qkv = clip_qkv + self.qk_ln = qk_ln + self.d_model = d_model + self.n_heads = n_heads + self.head_dim = d_model // n_heads + self.softmax_scale = softmax_scale + if self.softmax_scale is None: + self.softmax_scale = 1 / math.sqrt(self.head_dim) + self.attn_dropout_p = attn_pdrop + self.Wqkv = nn.Linear(d_model, d_model + 2 * self.head_dim, device=device) + fuse_splits = (d_model, d_model + self.head_dim) + self.Wqkv._fused = (0, fuse_splits) + if self.qk_ln: + layernorm_class = LPLayerNorm if low_precision_layernorm else nn.LayerNorm + self.q_ln = layernorm_class(d_model, device=device) + self.k_ln = layernorm_class(self.head_dim, device=device) + if self.attn_impl == 'flash': + self.attn_fn = flash_attn_fn + elif self.attn_impl == 'triton': + self.attn_fn = triton_flash_attn_fn + if verbose: + warnings.warn('While `attn_impl: triton` can be faster than `attn_impl: flash` ' + 'it uses more memory. When training larger models this can trigger ' + 'alloc retries which hurts performance. If encountered, we recommend ' + 'using `attn_impl: flash` if your model does not use `alibi` or `prefix_lm`.') + elif self.attn_impl == 'torch': + self.attn_fn = scaled_multihead_dot_product_attention + if torch.cuda.is_available() and verbose: + warnings.warn('Using `attn_impl: torch`. If your model does not use `alibi` or ' + '`prefix_lm` we recommend using `attn_impl: flash` otherwise ' + 'we recommend using `attn_impl: triton`.') + else: + raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') + self.out_proj = nn.Linear(self.d_model, self.d_model, device=device) + self.out_proj._is_residual = True + + def forward(self, x, past_key_value=None, attn_bias=None, attention_mask=None, is_causal=True, needs_weights=False): + qkv = self.Wqkv(x) + if self.clip_qkv: + qkv.clamp_(min=-self.clip_qkv, max=self.clip_qkv) + (query, key, value) = qkv.split([self.d_model, self.head_dim, self.head_dim], dim=2) + key_padding_mask = attention_mask + if self.qk_ln: + dtype = query.dtype + query = self.q_ln(query).to(dtype) + key = self.k_ln(key).to(dtype) + (context, attn_weights, past_key_value) = self.attn_fn(query, key, value, self.n_heads, past_key_value=past_key_value, softmax_scale=self.softmax_scale, attn_bias=attn_bias, key_padding_mask=key_padding_mask, is_causal=is_causal, dropout_p=self.attn_dropout_p, training=self.training, needs_weights=needs_weights, multiquery=True) + return (self.out_proj(context), attn_weights, past_key_value) + +def attn_bias_shape(attn_impl, n_heads, seq_len, alibi, prefix_lm, causal, use_sequence_id): + if attn_impl == 'flash': + return None + elif attn_impl in ['torch', 'triton']: + if alibi: + if (prefix_lm or not causal) or use_sequence_id: + return (1, n_heads, seq_len, seq_len) + return (1, n_heads, 1, seq_len) + elif prefix_lm or use_sequence_id: + return (1, 1, seq_len, seq_len) + return None + else: + raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') + +def build_attn_bias(attn_impl, attn_bias, n_heads, seq_len, causal=False, alibi=False, alibi_bias_max=8): + if attn_impl == 'flash': + return None + elif attn_impl in ['torch', 'triton']: + if alibi: + (device, dtype) = (attn_bias.device, attn_bias.dtype) + attn_bias = attn_bias.add(build_alibi_bias(n_heads, seq_len, full=not causal, alibi_bias_max=alibi_bias_max, device=device, dtype=dtype)) + return attn_bias + else: + raise ValueError(f'attn_impl={attn_impl!r} is an invalid setting.') + +def gen_slopes(n_heads, alibi_bias_max=8, device=None): + _n_heads = 2 ** math.ceil(math.log2(n_heads)) + m = torch.arange(1, _n_heads + 1, dtype=torch.float32, device=device) + m = m.mul(alibi_bias_max / _n_heads) + slopes = 1.0 / torch.pow(2, m) + if _n_heads != n_heads: + slopes = torch.concat([slopes[1::2], slopes[::2]])[:n_heads] + return slopes.view(1, n_heads, 1, 1) + +def build_alibi_bias(n_heads, seq_len, full=False, alibi_bias_max=8, device=None, dtype=None): + alibi_bias = torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, 1, seq_len) + if full: + alibi_bias = alibi_bias - torch.arange(1 - seq_len, 1, dtype=torch.int32, device=device).view(1, 1, seq_len, 1) + alibi_bias = alibi_bias.abs().mul(-1) + slopes = gen_slopes(n_heads, alibi_bias_max, device=device) + alibi_bias = alibi_bias * slopes + return alibi_bias.to(dtype=dtype) +ATTN_CLASS_REGISTRY = {'multihead_attention': MultiheadAttention, 'multiquery_attention': MultiQueryAttention} diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/blocks.py b/Geo/GeochatP-main/geochat/model/language_model/mpt/blocks.py new file mode 100644 index 0000000000000000000000000000000000000000..537e7f9190713bd73332aeb80702efa39320ca60 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/mpt/blocks.py @@ -0,0 +1,41 @@ +"""GPT Blocks used for the GPT Model.""" +from typing import Dict, Optional, Tuple +import torch +import torch.nn as nn +from .attention import ATTN_CLASS_REGISTRY +from .norm import NORM_CLASS_REGISTRY + +class MPTMLP(nn.Module): + + def __init__(self, d_model: int, expansion_ratio: int, device: Optional[str]=None): + super().__init__() + self.up_proj = nn.Linear(d_model, expansion_ratio * d_model, device=device) + self.act = nn.GELU(approximate='none') + self.down_proj = nn.Linear(expansion_ratio * d_model, d_model, device=device) + self.down_proj._is_residual = True + + def forward(self, x): + return self.down_proj(self.act(self.up_proj(x))) + +class MPTBlock(nn.Module): + + def __init__(self, d_model: int, n_heads: int, expansion_ratio: int, attn_config: Dict={'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8}, resid_pdrop: float=0.0, norm_type: str='low_precision_layernorm', verbose: int=0, device: Optional[str]=None, **kwargs): + del kwargs + super().__init__() + norm_class = NORM_CLASS_REGISTRY[norm_type.lower()] + attn_class = ATTN_CLASS_REGISTRY[attn_config['attn_type']] + self.norm_1 = norm_class(d_model, device=device) + self.attn = attn_class(attn_impl=attn_config['attn_impl'], clip_qkv=attn_config['clip_qkv'], qk_ln=attn_config['qk_ln'], softmax_scale=attn_config['softmax_scale'], attn_pdrop=attn_config['attn_pdrop'], d_model=d_model, n_heads=n_heads, verbose=verbose, device=device) + self.norm_2 = norm_class(d_model, device=device) + self.ffn = MPTMLP(d_model=d_model, expansion_ratio=expansion_ratio, device=device) + self.resid_attn_dropout = nn.Dropout(resid_pdrop) + self.resid_ffn_dropout = nn.Dropout(resid_pdrop) + + def forward(self, x: torch.Tensor, past_key_value: Optional[Tuple[torch.Tensor]]=None, attn_bias: Optional[torch.Tensor]=None, attention_mask: Optional[torch.ByteTensor]=None, is_causal: bool=True) -> Tuple[torch.Tensor, Optional[Tuple[torch.Tensor]]]: + a = self.norm_1(x) + (b, attn_weights, past_key_value) = self.attn(a, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=is_causal) + x = x + self.resid_attn_dropout(b) + m = self.norm_2(x) + n = self.ffn(m) + x = x + self.resid_ffn_dropout(n) + return (x, attn_weights, past_key_value) \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/configuration_mpt.py b/Geo/GeochatP-main/geochat/model/language_model/mpt/configuration_mpt.py new file mode 100644 index 0000000000000000000000000000000000000000..e9eb6fc59b50654ddbe19ed56ad8c0abd1b8efef --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/mpt/configuration_mpt.py @@ -0,0 +1,118 @@ +"""A HuggingFace-style model configuration.""" +from typing import Dict, Optional, Union +from transformers import PretrainedConfig +attn_config_defaults: Dict = {'attn_type': 'multihead_attention', 'attn_pdrop': 0.0, 'attn_impl': 'triton', 'qk_ln': False, 'clip_qkv': None, 'softmax_scale': None, 'prefix_lm': False, 'attn_uses_sequence_id': False, 'alibi': False, 'alibi_bias_max': 8} +init_config_defaults: Dict = {'name': 'kaiming_normal_', 'fan_mode': 'fan_in', 'init_nonlinearity': 'relu', 'init_div_is_residual': True, 'emb_init_std': None, 'emb_init_uniform_lim': None, 'init_std': None, 'init_gain': 0.0} + +class MPTConfig(PretrainedConfig): + model_type = 'mpt' + + def __init__(self, d_model: int=2048, n_heads: int=16, n_layers: int=24, expansion_ratio: int=4, max_seq_len: int=2048, vocab_size: int=50368, resid_pdrop: float=0.0, emb_pdrop: float=0.0, learned_pos_emb: bool=True, attn_config: Dict=attn_config_defaults, init_device: str='cpu', logit_scale: Optional[Union[float, str]]=None, no_bias: bool=False, verbose: int=0, embedding_fraction: float=1.0, norm_type: str='low_precision_layernorm', use_cache: bool=False, init_config: Dict=init_config_defaults, **kwargs): + """The MPT configuration class. + + Args: + d_model (int): The size of the embedding dimension of the model. + n_heads (int): The number of attention heads. + n_layers (int): The number of layers in the model. + expansion_ratio (int): The ratio of the up/down scale in the MLP. + max_seq_len (int): The maximum sequence length of the model. + vocab_size (int): The size of the vocabulary. + resid_pdrop (float): The dropout probability applied to the attention output before combining with residual. + emb_pdrop (float): The dropout probability for the embedding layer. + learned_pos_emb (bool): Whether to use learned positional embeddings + attn_config (Dict): A dictionary used to configure the model's attention module: + attn_type (str): type of attention to use. Options: multihead_attention, multiquery_attention + attn_pdrop (float): The dropout probability for the attention layers. + attn_impl (str): The attention implementation to use. One of 'torch', 'flash', or 'triton'. + qk_ln (bool): Whether to apply layer normalization to the queries and keys in the attention layer. + clip_qkv (Optional[float]): If not None, clip the queries, keys, and values in the attention layer to + this value. + softmax_scale (Optional[float]): If not None, scale the softmax in the attention layer by this value. If None, + use the default scale of ``1/sqrt(d_keys)``. + prefix_lm (Optional[bool]): Whether the model should operate as a Prefix LM. This requires passing an + extra `prefix_mask` argument which indicates which tokens belong to the prefix. Tokens in the prefix + can attend to one another bi-directionally. Tokens outside the prefix use causal attention. + attn_uses_sequence_id (Optional[bool]): Whether to restrict attention to tokens that have the same sequence_id. + When the model is in `train` mode, this requires passing an extra `sequence_id` argument which indicates + which sub-sequence each token belongs to. + Defaults to ``False`` meaning any provided `sequence_id` will be ignored. + alibi (bool): Whether to use the alibi bias instead of position embeddings. + alibi_bias_max (int): The maximum value of the alibi bias. + init_device (str): The device to use for parameter initialization. + logit_scale (Optional[Union[float, str]]): If not None, scale the logits by this value. + no_bias (bool): Whether to use bias in all layers. + verbose (int): The verbosity level. 0 is silent. + embedding_fraction (float): The fraction to scale the gradients of the embedding layer by. + norm_type (str): choose type of norm to use + multiquery_attention (bool): Whether to use multiquery attention implementation. + use_cache (bool): Whether or not the model should return the last key/values attentions + init_config (Dict): A dictionary used to configure the model initialization: + init_config.name: The parameter initialization scheme to use. Options: 'default_', 'baseline_', + 'kaiming_uniform_', 'kaiming_normal_', 'neox_init_', 'small_init_', 'xavier_uniform_', or + 'xavier_normal_'. These mimic the parameter initialization methods in PyTorch. + init_div_is_residual (Union[int, float, str, bool]): Value to divide initial weights by if ``module._is_residual`` is True. + emb_init_std (Optional[float]): The standard deviation of the normal distribution used to initialize the embedding layer. + emb_init_uniform_lim (Optional[Union[Tuple[float, float], float]]): The lower and upper limits of the uniform distribution + used to initialize the embedding layer. Mutually exclusive with ``emb_init_std``. + init_std (float): The standard deviation of the normal distribution used to initialize the model, + if using the baseline_ parameter initialization scheme. + init_gain (float): The gain to use for parameter initialization with kaiming or xavier initialization schemes. + fan_mode (str): The fan mode to use for parameter initialization with kaiming initialization schemes. + init_nonlinearity (str): The nonlinearity to use for parameter initialization with kaiming initialization schemes. + --- + See llmfoundry.models.utils.param_init_fns.py for info on other param init config options + """ + self.d_model = d_model + self.n_heads = n_heads + self.n_layers = n_layers + self.expansion_ratio = expansion_ratio + self.max_seq_len = max_seq_len + self.vocab_size = vocab_size + self.resid_pdrop = resid_pdrop + self.emb_pdrop = emb_pdrop + self.learned_pos_emb = learned_pos_emb + self.attn_config = attn_config + self.init_device = init_device + self.logit_scale = logit_scale + self.no_bias = no_bias + self.verbose = verbose + self.embedding_fraction = embedding_fraction + self.norm_type = norm_type + self.use_cache = use_cache + self.init_config = init_config + if 'name' in kwargs: + del kwargs['name'] + if 'loss_fn' in kwargs: + del kwargs['loss_fn'] + super().__init__(**kwargs) + self._validate_config() + + def _set_config_defaults(self, config, config_defaults): + for (k, v) in config_defaults.items(): + if k not in config: + config[k] = v + return config + + def _validate_config(self): + self.attn_config = self._set_config_defaults(self.attn_config, attn_config_defaults) + self.init_config = self._set_config_defaults(self.init_config, init_config_defaults) + if self.d_model % self.n_heads != 0: + raise ValueError('d_model must be divisible by n_heads') + if any((prob < 0 or prob > 1 for prob in [self.attn_config['attn_pdrop'], self.resid_pdrop, self.emb_pdrop])): + raise ValueError("self.attn_config['attn_pdrop'], resid_pdrop, emb_pdrop are probabilities and must be between 0 and 1") + if self.attn_config['attn_impl'] not in ['torch', 'flash', 'triton']: + raise ValueError(f"Unknown attn_impl={self.attn_config['attn_impl']}") + if self.attn_config['prefix_lm'] and self.attn_config['attn_impl'] not in ['torch', 'triton']: + raise NotImplementedError('prefix_lm only implemented with torch and triton attention.') + if self.attn_config['alibi'] and self.attn_config['attn_impl'] not in ['torch', 'triton']: + raise NotImplementedError('alibi only implemented with torch and triton attention.') + if self.attn_config['attn_uses_sequence_id'] and self.attn_config['attn_impl'] not in ['torch', 'triton']: + raise NotImplementedError('attn_uses_sequence_id only implemented with torch and triton attention.') + if self.embedding_fraction > 1 or self.embedding_fraction <= 0: + raise ValueError('model.embedding_fraction must be between 0 (exclusive) and 1 (inclusive)!') + if isinstance(self.logit_scale, str) and self.logit_scale != 'inv_sqrt_d_model': + raise ValueError(f"self.logit_scale={self.logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.") + if self.init_config.get('name', None) is None: + raise ValueError(f"self.init_config={self.init_config!r} 'name' needs to be set.") + if not self.learned_pos_emb and (not self.attn_config['alibi']): + raise ValueError(f'Positional information must be provided to the model using either learned_pos_emb or alibi.') \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/custom_embedding.py b/Geo/GeochatP-main/geochat/model/language_model/mpt/custom_embedding.py new file mode 100644 index 0000000000000000000000000000000000000000..ab357952c397f47898863e8405c4958bb8de82fd --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/mpt/custom_embedding.py @@ -0,0 +1,11 @@ +import torch +import torch.nn as nn +import torch.nn.functional as F +from torch import Tensor + +class SharedEmbedding(nn.Embedding): + + def forward(self, input: Tensor, unembed: bool=False) -> Tensor: + if unembed: + return F.linear(input, self.weight) + return super().forward(input) \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/flash_attn_triton.py b/Geo/GeochatP-main/geochat/model/language_model/mpt/flash_attn_triton.py new file mode 100644 index 0000000000000000000000000000000000000000..c0a42186d982283add95b63d99fc118e845bcf9d --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/mpt/flash_attn_triton.py @@ -0,0 +1,484 @@ +""" +Copied from https://github.com/HazyResearch/flash-attention/blob/eff9fe6b8076df59d64d7a3f464696738a3c7c24/flash_attn/flash_attn_triton.py +update imports to use 'triton_pre_mlir' + +*Experimental* implementation of FlashAttention in Triton. +Tested with triton==2.0.0.dev20221202. +Triton 2.0 has a new backend (MLIR) but seems like it doesn't yet work for head dimensions +other than 64: +https://github.com/openai/triton/blob/d376020f90002757eea3ea9475d4f7cfc2ec5ead/python/triton/ops/flash_attention.py#L207 +We'll update this implementation with the new Triton backend once this is fixed. + +We use the FlashAttention implementation from Phil Tillet a starting point. +https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py + +Changes: +- Implement both causal and non-causal attention. +- Implement both self-attention and cross-attention. +- Support arbitrary seqlens (not just multiples of 128), for both forward and backward. +- Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both forward and backward. +- Support attention bias. +- Speed up the forward pass a bit, and only store the LSE instead of m and l. +- Make the backward for d=128 much faster by reducing register spilling. +- Optionally parallelize the backward pass across seqlen_k, to deal with the case of +small batch size * nheads. + +Caution: +- This is an *experimental* implementation. The forward pass should be quite robust but +I'm not 100% sure that the backward pass doesn't have race conditions (due to the Triton compiler). +- This implementation has only been tested on A100. +- If you plan to use headdim other than 64 and 128, you should test for race conditions +(due to the Triton compiler), as done in tests/test_flash_attn.py +"test_flash_attn_triton_race_condition". I've tested and fixed many race conditions +for different head dimensions (40, 48, 64, 128, 80, 88, 96), but I'm still not 100% confident +that there are none left for other head dimensions. + +Differences between this Triton version and the CUDA version: +- Triton version doesn't support dropout. +- Triton forward is generally faster than CUDA forward, while Triton backward is +generally slower than CUDA backward. Overall Triton forward + backward is slightly slower +than CUDA forward + backward. +- Triton version doesn't support different sequence lengths in a batch (i.e., RaggedTensor/NestedTensor). +- Triton version supports attention bias, while CUDA version doesn't. +""" +import math +import torch +import triton_pre_mlir as triton +import triton_pre_mlir.language as tl + +@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']}) +@triton.jit +def _fwd_kernel(Q, K, V, Bias, Out, Lse, TMP, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_ob, stride_oh, stride_om, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): + start_m = tl.program_id(0) + off_hb = tl.program_id(1) + off_b = off_hb // nheads + off_h = off_hb % nheads + offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) + offs_n = tl.arange(0, BLOCK_N) + offs_d = tl.arange(0, BLOCK_HEADDIM) + q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :]) + k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :]) + v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :]) + if BIAS_TYPE == 'vector': + b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + offs_n + elif BIAS_TYPE == 'matrix': + b_ptrs = Bias + off_b * stride_bb + off_h * stride_bh + (offs_m[:, None] * stride_bm + offs_n[None, :]) + t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m + lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') + m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float('inf') + acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32) + if EVEN_M & EVEN_N: + if EVEN_HEADDIM: + q = tl.load(q_ptrs) + else: + q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0) + elif EVEN_HEADDIM: + q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0) + else: + q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) + end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k) + for start_n in range(0, end_n, BLOCK_N): + start_n = tl.multiple_of(start_n, BLOCK_N) + if EVEN_N & EVEN_M: + if EVEN_HEADDIM: + k = tl.load(k_ptrs + start_n * stride_kn) + else: + k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0) + elif EVEN_HEADDIM: + k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) + else: + k = tl.load(k_ptrs + start_n * stride_kn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) + qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32) + qk += tl.dot(q, k, trans_b=True) + if not EVEN_N: + qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float('-inf')) + if IS_CAUSAL: + qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float('-inf')) + if BIAS_TYPE != 'none': + if BIAS_TYPE == 'vector': + if EVEN_N: + bias = tl.load(b_ptrs + start_n).to(tl.float32) + else: + bias = tl.load(b_ptrs + start_n, mask=start_n + offs_n < seqlen_k, other=0.0).to(tl.float32) + bias = bias[None, :] + elif BIAS_TYPE == 'matrix': + if EVEN_M & EVEN_N: + bias = tl.load(b_ptrs + start_n).to(tl.float32) + else: + bias = tl.load(b_ptrs + start_n, mask=(offs_m[:, None] < seqlen_q) & ((start_n + offs_n)[None, :] < seqlen_k), other=0.0).to(tl.float32) + qk = qk * softmax_scale + bias + m_ij = tl.maximum(tl.max(qk, 1), lse_i) + p = tl.exp(qk - m_ij[:, None]) + else: + m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i) + p = tl.exp(qk * softmax_scale - m_ij[:, None]) + l_ij = tl.sum(p, 1) + acc_o_scale = tl.exp(m_i - m_ij) + tl.store(t_ptrs, acc_o_scale) + acc_o_scale = tl.load(t_ptrs) + acc_o = acc_o * acc_o_scale[:, None] + if EVEN_N & EVEN_M: + if EVEN_HEADDIM: + v = tl.load(v_ptrs + start_n * stride_vn) + else: + v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0) + elif EVEN_HEADDIM: + v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k, other=0.0) + else: + v = tl.load(v_ptrs + start_n * stride_vn, mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) + p = p.to(v.dtype) + acc_o += tl.dot(p, v) + m_i = m_ij + l_i_new = tl.exp(lse_i - m_ij) + l_ij + lse_i = m_ij + tl.log(l_i_new) + o_scale = tl.exp(m_i - lse_i) + tl.store(t_ptrs, o_scale) + o_scale = tl.load(t_ptrs) + acc_o = acc_o * o_scale[:, None] + start_m = tl.program_id(0) + offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) + lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m + tl.store(lse_ptrs, lse_i) + offs_d = tl.arange(0, BLOCK_HEADDIM) + out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_d[None, :]) + if EVEN_M: + if EVEN_HEADDIM: + tl.store(out_ptrs, acc_o) + else: + tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim) + elif EVEN_HEADDIM: + tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q) + else: + tl.store(out_ptrs, acc_o, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim)) + +@triton.jit +def _bwd_preprocess_do_o_dot(Out, DO, Delta, stride_ob, stride_oh, stride_om, stride_dob, stride_doh, stride_dom, nheads, seqlen_q, seqlen_q_rounded, headdim, BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr): + start_m = tl.program_id(0) + off_hb = tl.program_id(1) + off_b = off_hb // nheads + off_h = off_hb % nheads + offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M) + offs_d = tl.arange(0, BLOCK_HEADDIM) + o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32) + do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :], mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32) + delta = tl.sum(o * do, axis=1) + tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta) + +@triton.jit +def _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr): + if EVEN_N & EVEN_M: + if EVEN_HEADDIM: + tl.store(dv_ptrs, dv) + tl.store(dk_ptrs, dk) + else: + tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim) + tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim) + elif EVEN_HEADDIM: + tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k) + tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k) + else: + tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) + tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim)) + +@triton.jit +def _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD: tl.constexpr, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): + begin_m = 0 if not IS_CAUSAL else start_n * BLOCK_N // BLOCK_M * BLOCK_M + offs_qm = begin_m + tl.arange(0, BLOCK_M) + offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N) + offs_m = tl.arange(0, BLOCK_M) + offs_d = tl.arange(0, BLOCK_HEADDIM) + q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :]) + k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :]) + v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :]) + do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :]) + dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :]) + if BIAS_TYPE == 'vector': + b_ptrs = Bias + offs_n + elif BIAS_TYPE == 'matrix': + b_ptrs = Bias + (offs_qm[:, None] * stride_bm + offs_n[None, :]) + dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) + dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32) + if begin_m >= seqlen_q: + dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) + dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) + _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM) + return + if EVEN_N & EVEN_M: + if EVEN_HEADDIM: + k = tl.load(k_ptrs) + v = tl.load(v_ptrs) + else: + k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0) + v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0) + elif EVEN_HEADDIM: + k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) + v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0) + else: + k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) + v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim), other=0.0) + num_block_m = tl.cdiv(seqlen_q, BLOCK_M) + for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M): + start_m = tl.multiple_of(start_m, BLOCK_M) + offs_m_curr = start_m + offs_m + if EVEN_M & EVEN_HEADDIM: + q = tl.load(q_ptrs) + elif EVEN_HEADDIM: + q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0) + else: + q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) + qk = tl.dot(q, k, trans_b=True) + if not EVEN_N: + qk = tl.where(offs_n[None, :] < seqlen_k, qk, float('-inf')) + if IS_CAUSAL: + qk = tl.where(offs_m_curr[:, None] >= offs_n[None, :], qk, float('-inf')) + if BIAS_TYPE != 'none': + tl.debug_barrier() + if BIAS_TYPE == 'vector': + if EVEN_N: + bias = tl.load(b_ptrs).to(tl.float32) + else: + bias = tl.load(b_ptrs, mask=offs_n < seqlen_k, other=0.0).to(tl.float32) + bias = bias[None, :] + elif BIAS_TYPE == 'matrix': + if EVEN_M & EVEN_N: + bias = tl.load(b_ptrs).to(tl.float32) + else: + bias = tl.load(b_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_n[None, :] < seqlen_k), other=0.0).to(tl.float32) + qk = qk * softmax_scale + bias + if not EVEN_M & EVEN_HEADDIM: + tl.debug_barrier() + lse_i = tl.load(LSE + offs_m_curr) + if BIAS_TYPE == 'none': + p = tl.exp(qk * softmax_scale - lse_i[:, None]) + else: + p = tl.exp(qk - lse_i[:, None]) + if EVEN_M & EVEN_HEADDIM: + do = tl.load(do_ptrs) + else: + do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0) + dv += tl.dot(p.to(do.dtype), do, trans_a=True) + if not EVEN_M & EVEN_HEADDIM: + tl.debug_barrier() + dp = tl.dot(do, v, trans_b=True) + if not EVEN_HEADDIM: + tl.debug_barrier() + Di = tl.load(D + offs_m_curr) + ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype) + dk += tl.dot(ds, q, trans_a=True) + if not EVEN_M & EVEN_HEADDIM: + tl.debug_barrier() + if not ATOMIC_ADD: + if EVEN_M & EVEN_HEADDIM: + dq = tl.load(dq_ptrs, eviction_policy='evict_last') + dq += tl.dot(ds, k) + tl.store(dq_ptrs, dq, eviction_policy='evict_last') + elif EVEN_HEADDIM: + dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0, eviction_policy='evict_last') + dq += tl.dot(ds, k) + tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q, eviction_policy='evict_last') + else: + dq = tl.load(dq_ptrs, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0, eviction_policy='evict_last') + dq += tl.dot(ds, k) + tl.store(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim), eviction_policy='evict_last') + else: + dq = tl.dot(ds, k) + if EVEN_M & EVEN_HEADDIM: + tl.atomic_add(dq_ptrs, dq) + elif EVEN_HEADDIM: + tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q) + else: + tl.atomic_add(dq_ptrs, dq, mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim)) + dq_ptrs += BLOCK_M * stride_dqm + q_ptrs += BLOCK_M * stride_qm + do_ptrs += BLOCK_M * stride_dom + if BIAS_TYPE == 'matrix': + b_ptrs += BLOCK_M * stride_bm + dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :]) + dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :]) + _bwd_store_dk_dv(dk_ptrs, dv_ptrs, dk, dv, offs_n, offs_d, seqlen_k, headdim, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM) + +def init_to_zero(name): + return lambda nargs: nargs[name].zero_() + +@triton.autotune(configs=[triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')), triton.Config({'BLOCK_M': 128, 'BLOCK_N': 128, 'SEQUENCE_PARALLEL': True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ'))], key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'BIAS_TYPE', 'IS_CAUSAL', 'BLOCK_HEADDIM']) +@triton.heuristics({'EVEN_M': lambda args: args['seqlen_q'] % args['BLOCK_M'] == 0, 'EVEN_N': lambda args: args['seqlen_k'] % args['BLOCK_N'] == 0, 'EVEN_HEADDIM': lambda args: args['headdim'] == args['BLOCK_HEADDIM']}) +@triton.jit +def _bwd_kernel(Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qb, stride_qh, stride_qm, stride_kb, stride_kh, stride_kn, stride_vb, stride_vh, stride_vn, stride_bb, stride_bh, stride_bm, stride_dob, stride_doh, stride_dom, stride_dqb, stride_dqh, stride_dqm, stride_dkb, stride_dkh, stride_dkn, stride_dvb, stride_dvh, stride_dvn, nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim, CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K, BIAS_TYPE: tl.constexpr, IS_CAUSAL: tl.constexpr, BLOCK_HEADDIM: tl.constexpr, SEQUENCE_PARALLEL: tl.constexpr, EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr, BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr): + off_hb = tl.program_id(1) + off_b = off_hb // nheads + off_h = off_hb % nheads + Q += off_b * stride_qb + off_h * stride_qh + K += off_b * stride_kb + off_h * stride_kh + V += off_b * stride_vb + off_h * stride_vh + DO += off_b * stride_dob + off_h * stride_doh + DQ += off_b * stride_dqb + off_h * stride_dqh + DK += off_b * stride_dkb + off_h * stride_dkh + DV += off_b * stride_dvb + off_h * stride_dvh + if BIAS_TYPE != 'none': + Bias += off_b * stride_bb + off_h * stride_bh + D += off_hb * seqlen_q_rounded + LSE += off_hb * seqlen_q_rounded + if not SEQUENCE_PARALLEL: + num_block_n = tl.cdiv(seqlen_k, BLOCK_N) + for start_n in range(0, num_block_n): + _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=False, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N) + else: + start_n = tl.program_id(0) + _bwd_kernel_one_col_block(start_n, Q, K, V, Bias, DO, DQ, DK, DV, LSE, D, softmax_scale, stride_qm, stride_kn, stride_vn, stride_bm, stride_dom, stride_dqm, stride_dkn, stride_dvn, seqlen_q, seqlen_k, headdim, ATOMIC_ADD=True, BIAS_TYPE=BIAS_TYPE, IS_CAUSAL=IS_CAUSAL, BLOCK_HEADDIM=BLOCK_HEADDIM, EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM, BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N) + +def _flash_attn_forward(q, k, v, bias=None, causal=False, softmax_scale=None): + (batch, seqlen_q, nheads, d) = q.shape + (_, seqlen_k, _, _) = k.shape + assert k.shape == (batch, seqlen_k, nheads, d) + assert v.shape == (batch, seqlen_k, nheads, d) + assert d <= 128, 'FlashAttention only support head dimensions up to 128' + assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type' + assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16' + assert q.is_cuda and k.is_cuda and v.is_cuda + softmax_scale = softmax_scale or 1.0 / math.sqrt(d) + has_bias = bias is not None + bias_type = 'none' + if has_bias: + assert bias.dtype in [q.dtype, torch.float] + assert bias.is_cuda + assert bias.dim() == 4 + if bias.stride(-1) != 1: + bias = bias.contiguous() + if bias.shape[2:] == (1, seqlen_k): + bias_type = 'vector' + elif bias.shape[2:] == (seqlen_q, seqlen_k): + bias_type = 'matrix' + else: + raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)') + bias = bias.expand(batch, nheads, seqlen_q, seqlen_k) + bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) + seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 + lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) + tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32) + o = torch.empty_like(q) + BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) + BLOCK = 128 + num_warps = 4 if d <= 64 else 8 + grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads) + _fwd_kernel[grid](q, k, v, bias, o, lse, tmp, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, o.stride(0), o.stride(2), o.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM, BLOCK_M=BLOCK, BLOCK_N=BLOCK, num_warps=num_warps, num_stages=1) + return (o, lse, softmax_scale) + +def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=None, causal=False, softmax_scale=None): + if do.stride(-1) != 1: + do = do.contiguous() + (batch, seqlen_q, nheads, d) = q.shape + (_, seqlen_k, _, _) = k.shape + assert d <= 128 + seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128 + assert lse.shape == (batch, nheads, seqlen_q_rounded) + assert q.stride(-1) == k.stride(-1) == v.stride(-1) == o.stride(-1) == 1 + assert dq.stride(-1) == dk.stride(-1) == dv.stride(-1) == 1 + softmax_scale = softmax_scale or 1.0 / math.sqrt(d) + dq_accum = torch.empty_like(q, dtype=torch.float32) + delta = torch.empty_like(lse) + BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16) + grid = lambda META: (triton.cdiv(seqlen_q, META['BLOCK_M']), batch * nheads) + _bwd_preprocess_do_o_dot[grid](o, do, delta, o.stride(0), o.stride(2), o.stride(1), do.stride(0), do.stride(2), do.stride(1), nheads, seqlen_q, seqlen_q_rounded, d, BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM) + has_bias = bias is not None + bias_type = 'none' + if has_bias: + assert bias.dtype in [q.dtype, torch.float] + assert bias.is_cuda + assert bias.dim() == 4 + assert bias.stride(-1) == 1 + if bias.shape[2:] == (1, seqlen_k): + bias_type = 'vector' + elif bias.shape[2:] == (seqlen_q, seqlen_k): + bias_type = 'matrix' + else: + raise RuntimeError('Last 2 dimensions of bias must be (1, seqlen_k) or (seqlen_q, seqlen_k)') + bias = bias.expand(batch, nheads, seqlen_q, seqlen_k) + bias_strides = (bias.stride(0), bias.stride(1), bias.stride(2)) if has_bias else (0, 0, 0) + grid = lambda META: (triton.cdiv(seqlen_k, META['BLOCK_N']) if META['SEQUENCE_PARALLEL'] else 1, batch * nheads) + _bwd_kernel[grid](q, k, v, bias, do, dq_accum, dk, dv, lse, delta, softmax_scale, q.stride(0), q.stride(2), q.stride(1), k.stride(0), k.stride(2), k.stride(1), v.stride(0), v.stride(2), v.stride(1), *bias_strides, do.stride(0), do.stride(2), do.stride(1), dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1), dk.stride(0), dk.stride(2), dk.stride(1), dv.stride(0), dv.stride(2), dv.stride(1), nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d, seqlen_q // 32, seqlen_k // 32, bias_type, causal, BLOCK_HEADDIM) + dq.copy_(dq_accum) + +class FlashAttnQKVPackedFunc(torch.autograd.Function): + + @staticmethod + def forward(ctx, qkv, bias=None, causal=False, softmax_scale=None): + """ + qkv: (batch, seqlen, 3, nheads, headdim) + bias: optional, shape broadcastible to (batch, nheads, seqlen, seqlen). + For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen). + ALiBi mask for non-causal would have shape (1, nheads, seqlen, seqlen) + """ + if qkv.stride(-1) != 1: + qkv = qkv.contiguous() + (o, lse, ctx.softmax_scale) = _flash_attn_forward(qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], bias=bias, causal=causal, softmax_scale=softmax_scale) + ctx.save_for_backward(qkv, o, lse, bias) + ctx.causal = causal + return o + + @staticmethod + def backward(ctx, do): + (qkv, o, lse, bias) = ctx.saved_tensors + assert not ctx.needs_input_grad[1], 'FlashAttention does not support bias gradient yet' + with torch.inference_mode(): + dqkv = torch.empty_like(qkv) + _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse, dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) + return (dqkv, None, None, None) +flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply + +class FlashAttnKVPackedFunc(torch.autograd.Function): + + @staticmethod + def forward(ctx, q, kv, bias=None, causal=False, softmax_scale=None): + """ + q: (batch, seqlen_q, nheads, headdim) + kv: (batch, seqlen_k, 2, nheads, headdim) + bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). + For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). + ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) + """ + (q, kv) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]] + (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, kv[:, :, 0], kv[:, :, 1], bias=bias, causal=causal, softmax_scale=softmax_scale) + ctx.save_for_backward(q, kv, o, lse, bias) + ctx.causal = causal + return o + + @staticmethod + def backward(ctx, do): + (q, kv, o, lse, bias) = ctx.saved_tensors + if len(ctx.needs_input_grad) >= 3: + assert not ctx.needs_input_grad[2], 'FlashAttention does not support bias gradient yet' + with torch.inference_mode(): + dq = torch.empty_like(q) + dkv = torch.empty_like(kv) + _flash_attn_backward(do, q, kv[:, :, 0], kv[:, :, 1], o, lse, dq, dkv[:, :, 0], dkv[:, :, 1], bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) + return (dq, dkv, None, None, None) +flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply + +class FlashAttnFunc(torch.autograd.Function): + + @staticmethod + def forward(ctx, q, k, v, bias=None, causal=False, softmax_scale=None): + """ + q: (batch_size, seqlen_q, nheads, headdim) + k, v: (batch_size, seqlen_k, nheads, headdim) + bias: optional, shape broadcastible to (batch, nheads, seqlen_q, seqlen_k). + For example, ALiBi mask for causal would have shape (1, nheads, 1, seqlen_k). + ALiBi mask for non-causal would have shape (1, nheads, seqlen_q, seqlen_k) + """ + (q, k, v) = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]] + (o, lse, ctx.softmax_scale) = _flash_attn_forward(q, k, v, bias=bias, causal=causal, softmax_scale=softmax_scale) + ctx.save_for_backward(q, k, v, o, lse, bias) + ctx.causal = causal + return o + + @staticmethod + def backward(ctx, do): + (q, k, v, o, lse, bias) = ctx.saved_tensors + assert not ctx.needs_input_grad[3], 'FlashAttention does not support bias gradient yet' + with torch.inference_mode(): + dq = torch.empty_like(q) + dk = torch.empty_like(k) + dv = torch.empty_like(v) + _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, bias=bias, causal=ctx.causal, softmax_scale=ctx.softmax_scale) + return (dq, dk, dv, None, None, None) +flash_attn_func = FlashAttnFunc.apply \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/hf_prefixlm_converter.py b/Geo/GeochatP-main/geochat/model/language_model/mpt/hf_prefixlm_converter.py new file mode 100644 index 0000000000000000000000000000000000000000..8c1a6487202a6400a7116a6bd68b493892ef0d14 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/mpt/hf_prefixlm_converter.py @@ -0,0 +1,415 @@ +"""Converts Huggingface Causal LM to Prefix LM. + +Conversion does lightweight surgery on a HuggingFace +Causal LM to convert it to a Prefix LM. + +Prefix LMs accepts a `bidirectional_mask` input in `forward` +and treat the input prompt as the prefix in `generate`. +""" +import math +import warnings +from types import MethodType +from typing import Any, Dict, List, Optional, Tuple, Union +import torch +from transformers.models.bloom.modeling_bloom import BaseModelOutputWithPastAndCrossAttentions, BloomForCausalLM, BloomModel, CausalLMOutputWithCrossAttentions, CrossEntropyLoss +from transformers.models.bloom.modeling_bloom import _expand_mask as _expand_mask_bloom +from transformers.models.bloom.modeling_bloom import _make_causal_mask as _make_causal_mask_bloom +from transformers.models.bloom.modeling_bloom import logging +from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel +from transformers.models.gpt_neo.modeling_gpt_neo import GPTNeoForCausalLM +from transformers.models.gpt_neox.modeling_gpt_neox import GPTNeoXForCausalLM +from transformers.models.gptj.modeling_gptj import GPTJForCausalLM +from transformers.models.opt.modeling_opt import OPTForCausalLM +from transformers.models.opt.modeling_opt import _expand_mask as _expand_mask_opt +from transformers.models.opt.modeling_opt import _make_causal_mask as _make_causal_mask_opt +logger = logging.get_logger(__name__) +_SUPPORTED_GPT_MODELS = (GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM) +CAUSAL_GPT_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM] + +def _convert_gpt_causal_lm_to_prefix_lm(model: CAUSAL_GPT_TYPES) -> CAUSAL_GPT_TYPES: + """Converts a GPT-style Causal LM to a Prefix LM. + + Supported HuggingFace model classes: + - `GPT2LMHeadModel` + - `GPTNeoForCausalLM` + - `GPTNeoXForCausalLM` + - `GPTJForCausalLM` + + See `convert_hf_causal_lm_to_prefix_lm` for more details. + """ + if hasattr(model, '_prefix_lm_converted'): + return model + assert isinstance(model, _SUPPORTED_GPT_MODELS) + assert model.config.add_cross_attention == False, 'Only supports GPT-style decoder-only models' + + def _get_attn_modules(model: CAUSAL_GPT_TYPES) -> List[torch.nn.Module]: + """Helper that gets a list of the model's attention modules. + + Each module has a `bias` buffer used for causal masking. The Prefix LM + conversion adds logic to dynamically manipulate these biases to support + Prefix LM attention masking. + """ + attn_modules = [] + if isinstance(model, GPTNeoXForCausalLM): + blocks = model.gpt_neox.layers + else: + blocks = model.transformer.h + for block in blocks: + if isinstance(model, GPTNeoForCausalLM): + if block.attn.attention_type != 'global': + continue + attn_module = block.attn.attention + elif isinstance(model, GPTNeoXForCausalLM): + attn_module = block.attention + else: + attn_module = block.attn + attn_modules.append(attn_module) + return attn_modules + setattr(model, '_original_forward', getattr(model, 'forward')) + setattr(model, '_original_generate', getattr(model, 'generate')) + + def forward(self: CAUSAL_GPT_TYPES, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]]=None, attention_mask: Optional[torch.FloatTensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, token_type_ids: Optional[torch.LongTensor]=None, position_ids: Optional[torch.LongTensor]=None, head_mask: Optional[torch.FloatTensor]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None): + """Wraps original forward to enable PrefixLM attention.""" + + def call_og_forward(): + if isinstance(self, GPTNeoXForCausalLM): + return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) + else: + return self._original_forward(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) + if bidirectional_mask is None: + return call_og_forward() + assert isinstance(bidirectional_mask, torch.Tensor) + attn_modules = _get_attn_modules(model) + (b, s) = bidirectional_mask.shape + max_length = attn_modules[0].bias.shape[-1] + if s > max_length: + raise ValueError(f'bidirectional_mask sequence length (={s}) exceeds the ' + f'max length allowed by the model ({max_length}).') + assert s <= max_length + if s < max_length: + pad = torch.zeros((int(b), int(max_length - s)), dtype=bidirectional_mask.dtype, device=bidirectional_mask.device) + bidirectional_mask = torch.cat([bidirectional_mask, pad], dim=1) + bidirectional = bidirectional_mask.unsqueeze(1).unsqueeze(1) + for attn_module in attn_modules: + attn_module.bias.data = torch.logical_or(attn_module.bias.data, bidirectional) + output = call_og_forward() + for attn_module in attn_modules: + attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None] + return output + + def generate(self: CAUSAL_GPT_TYPES, *args: tuple, **kwargs: Dict[str, Any]): + """Wraps original generate to enable PrefixLM attention.""" + attn_modules = _get_attn_modules(model) + for attn_module in attn_modules: + attn_module.bias.data[:] = 1 + output = self._original_generate(*args, **kwargs) + for attn_module in attn_modules: + attn_module.bias.data = torch.tril(attn_module.bias.data[0, 0])[None, None] + return output + setattr(model, 'forward', MethodType(forward, model)) + setattr(model, 'generate', MethodType(generate, model)) + setattr(model, '_prefix_lm_converted', True) + return model + +def _convert_bloom_causal_lm_to_prefix_lm(model: BloomForCausalLM) -> BloomForCausalLM: + """Converts a BLOOM Causal LM to a Prefix LM. + + Supported HuggingFace model classes: + - `BloomForCausalLM` + + See `convert_hf_causal_lm_to_prefix_lm` for more details. + """ + if hasattr(model, '_prefix_lm_converted'): + return model + assert isinstance(model, BloomForCausalLM) + assert model.config.add_cross_attention == False, 'Only supports BLOOM decoder-only models' + + def _prepare_attn_mask(self: BloomModel, attention_mask: torch.Tensor, bidirectional_mask: Optional[torch.Tensor], input_shape: Tuple[int, int], past_key_values_length: int) -> torch.BoolTensor: + combined_attention_mask = None + device = attention_mask.device + (_, src_length) = input_shape + if src_length > 1: + combined_attention_mask = _make_causal_mask_bloom(input_shape, device=device, past_key_values_length=past_key_values_length) + if bidirectional_mask is not None: + assert attention_mask.shape == bidirectional_mask.shape + expanded_bidirectional_mask = _expand_mask_bloom(bidirectional_mask, tgt_length=src_length) + combined_attention_mask = torch.logical_and(combined_attention_mask, expanded_bidirectional_mask) + expanded_attn_mask = _expand_mask_bloom(attention_mask, tgt_length=src_length) + combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask | combined_attention_mask + return combined_attention_mask + + def _build_alibi_tensor(self: BloomModel, batch_size: int, query_length: int, key_length: int, dtype: torch.dtype, device: torch.device) -> torch.Tensor: + num_heads = self.config.n_head + closest_power_of_2 = 2 ** math.floor(math.log2(num_heads)) + base = torch.tensor(2 ** (-2 ** (-(math.log2(closest_power_of_2) - 3))), device=device, dtype=torch.float32) + powers = torch.arange(1, 1 + closest_power_of_2, device=device, dtype=torch.int32) + slopes = torch.pow(base, powers) + if closest_power_of_2 != num_heads: + extra_base = torch.tensor(2 ** (-2 ** (-(math.log2(2 * closest_power_of_2) - 3))), device=device, dtype=torch.float32) + num_remaining_heads = min(closest_power_of_2, num_heads - closest_power_of_2) + extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, device=device, dtype=torch.int32) + slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0) + qa = torch.arange(query_length, device=device, dtype=torch.int32).view(-1, 1) + ka = torch.arange(key_length, device=device, dtype=torch.int32).view(1, -1) + diffs = qa - ka + key_length - query_length + diffs = -diffs.abs() + alibi = slopes.view(1, num_heads, 1, 1) * diffs.view(1, 1, query_length, key_length) + alibi = alibi.expand(batch_size, -1, -1, -1).reshape(-1, query_length, key_length) + return alibi.to(dtype) + KeyValueT = Tuple[torch.Tensor, torch.Tensor] + + def forward(self: BloomModel, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.LongTensor]=None, inputs_embeds: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor, ...], BaseModelOutputWithPastAndCrossAttentions]: + if deprecated_arguments.pop('position_ids', False) is not False: + warnings.warn('`position_ids` have no functionality in BLOOM and will be removed in v5.0.0. ' + 'You can safely ignore passing `position_ids`.', FutureWarning) + if len(deprecated_arguments) > 0: + raise ValueError(f'Got unexpected arguments: {deprecated_arguments}') + output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions + output_hidden_states = output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states + use_cache = use_cache if use_cache is not None else self.config.use_cache + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + if input_ids is not None and inputs_embeds is not None: + raise ValueError('You cannot specify both input_ids and inputs_embeds at the same time') + elif input_ids is not None: + (batch_size, seq_length) = input_ids.shape + elif inputs_embeds is not None: + (batch_size, seq_length, _) = inputs_embeds.shape + else: + raise ValueError('You have to specify either input_ids or inputs_embeds') + if past_key_values is None: + past_key_values = tuple([None] * len(self.h)) + head_mask = self.get_head_mask(head_mask, self.config.n_layer) + if inputs_embeds is None: + inputs_embeds = self.word_embeddings(input_ids) + hidden_states = self.word_embeddings_layernorm(inputs_embeds) + presents = () if use_cache else None + all_self_attentions = () if output_attentions else None + all_hidden_states = () if output_hidden_states else None + seq_length_with_past = seq_length + past_key_values_length = 0 + if past_key_values[0] is not None: + tmp = past_key_values[0][0] + past_key_values_length = tmp.shape[2] + seq_length_with_past = seq_length_with_past + past_key_values_length + if attention_mask is None: + attention_mask = torch.ones((batch_size, seq_length_with_past), device=hidden_states.device) + else: + attention_mask = attention_mask.to(hidden_states.device) + alibi = self._build_alibi_tensor(batch_size=batch_size, query_length=seq_length, key_length=seq_length_with_past, dtype=hidden_states.dtype, device=hidden_states.device) + causal_mask = self._prepare_attn_mask(attention_mask, bidirectional_mask, input_shape=(batch_size, seq_length), past_key_values_length=past_key_values_length) + for (i, (block, layer_past)) in enumerate(zip(self.h, past_key_values)): + if output_hidden_states: + hst = (hidden_states,) + all_hidden_states = all_hidden_states + hst + if self.gradient_checkpointing and self.training: + if use_cache: + logger.warning('`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`...') + use_cache = False + + def create_custom_forward(module): + + def custom_forward(*inputs): + return module(*inputs, use_cache=use_cache, output_attentions=output_attentions) + return custom_forward + outputs = torch.utils.checkpoint.checkpoint(create_custom_forward(block), hidden_states, alibi, causal_mask, head_mask[i]) + else: + outputs = block(hidden_states, layer_past=layer_past, attention_mask=causal_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, alibi=alibi) + hidden_states = outputs[0] + if use_cache is True: + presents = presents + (outputs[1],) + if output_attentions: + oa = (outputs[2 if use_cache else 1],) + all_self_attentions = all_self_attentions + oa + hidden_states = self.ln_f(hidden_states) + if output_hidden_states: + hst = (hidden_states,) + all_hidden_states = all_hidden_states + hst + if not return_dict: + return tuple((v for v in [hidden_states, presents, all_hidden_states, all_self_attentions] if v is not None)) + return BaseModelOutputWithPastAndCrossAttentions(last_hidden_state=hidden_states, past_key_values=presents, hidden_states=all_hidden_states, attentions=all_self_attentions) + setattr(model.transformer, '_prepare_attn_mask', MethodType(_prepare_attn_mask, model.transformer)) + setattr(model.transformer, '_build_alibi_tensor', MethodType(_build_alibi_tensor, model.transformer)) + setattr(model.transformer, 'forward', MethodType(forward, model.transformer)) + KeyValueT = Tuple[torch.Tensor, torch.Tensor] + + def forward(self: BloomForCausalLM, input_ids: Optional[torch.LongTensor]=None, past_key_values: Optional[Tuple[KeyValueT, ...]]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.Tensor]=None, head_mask: Optional[torch.Tensor]=None, inputs_embeds: Optional[torch.Tensor]=None, labels: Optional[torch.Tensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None, **deprecated_arguments) -> Union[Tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]: + """Replacement forward method for BloomCausalLM.""" + if deprecated_arguments.pop('position_ids', False) is not False: + warnings.warn('`position_ids` have no functionality in BLOOM and will be removed ' + 'in v5.0.0. You can safely ignore passing `position_ids`.', FutureWarning) + if len(deprecated_arguments) > 0: + raise ValueError(f'Got unexpected arguments: {deprecated_arguments}') + return_dict = return_dict if return_dict is not None else self.config.use_return_dict + transformer_outputs = self.transformer(input_ids, past_key_values=past_key_values, attention_mask=attention_mask, bidirectional_mask=bidirectional_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) + hidden_states = transformer_outputs[0] + lm_logits = self.lm_head(hidden_states) + loss = None + if labels is not None: + shift_logits = lm_logits[..., :-1, :].contiguous() + shift_labels = labels[..., 1:].contiguous() + (batch_size, seq_length, vocab_size) = shift_logits.shape + loss_fct = CrossEntropyLoss() + loss = loss_fct(shift_logits.view(batch_size * seq_length, vocab_size), shift_labels.view(batch_size * seq_length)) + if not return_dict: + output = (lm_logits,) + transformer_outputs[1:] + return (loss,) + output if loss is not None else output + return CausalLMOutputWithCrossAttentions(loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions) + + def prepare_inputs_for_generation(self: BloomForCausalLM, input_ids: torch.LongTensor, past: Optional[torch.Tensor]=None, attention_mask: Optional[torch.Tensor]=None, **kwargs) -> dict: + if past: + input_ids = input_ids[:, -1].unsqueeze(-1) + bidirectional_mask = None + if past[0][0].shape[0] == input_ids.shape[0]: + past = self._convert_to_bloom_cache(past) + else: + bidirectional_mask = torch.ones_like(input_ids) + return {'input_ids': input_ids, 'past_key_values': past, 'use_cache': True, 'attention_mask': attention_mask, 'bidirectional_mask': bidirectional_mask} + setattr(model, 'forward', MethodType(forward, model)) + setattr(model, 'prepare_inputs_for_generation', MethodType(prepare_inputs_for_generation, model)) + setattr(model, '_prefix_lm_converted', True) + return model + +def _convert_opt_causal_lm_to_prefix_lm(model: OPTForCausalLM) -> OPTForCausalLM: + """Converts an OPT Causal LM to a Prefix LM. + + Supported HuggingFace model classes: + - `OPTForCausalLM` + + See `convert_hf_causal_lm_to_prefix_lm` for more details. + """ + if hasattr(model, '_prefix_lm_converted'): + return model + assert isinstance(model, OPTForCausalLM) + assert model.config.add_cross_attention == False, 'Only supports OPT decoder-only models' + setattr(model, '_original_forward', getattr(model, 'forward')) + setattr(model, '_original_generate', getattr(model, 'generate')) + model.model.decoder.bidirectional_mask = None + + def _prepare_decoder_attention_mask(self, attention_mask, input_shape, inputs_embeds, past_key_values_length): + combined_attention_mask = None + if input_shape[-1] > 1: + if self.bidirectional_mask == 'g': + (bsz, src_length) = input_shape + combined_attention_mask = torch.zeros((bsz, 1, src_length, src_length + past_key_values_length), dtype=inputs_embeds.dtype, device=inputs_embeds.device) + else: + combined_attention_mask = _make_causal_mask_opt(input_shape, inputs_embeds.dtype, past_key_values_length=past_key_values_length).to(inputs_embeds.device) + if self.bidirectional_mask is not None: + assert attention_mask.shape == self.bidirectional_mask.shape + expanded_bidirectional_mask = _expand_mask_opt(self.bidirectional_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device) + combined_attention_mask = torch.maximum(expanded_bidirectional_mask, combined_attention_mask) + if attention_mask is not None: + expanded_attn_mask = _expand_mask_opt(attention_mask, inputs_embeds.dtype, tgt_len=input_shape[-1]).to(inputs_embeds.device) + combined_attention_mask = expanded_attn_mask if combined_attention_mask is None else expanded_attn_mask + combined_attention_mask + return combined_attention_mask + setattr(model.model.decoder, '_prepare_decoder_attention_mask', MethodType(_prepare_decoder_attention_mask, model.model.decoder)) + + def forward(self: OPTForCausalLM, input_ids: Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None, bidirectional_mask: Optional[torch.ByteTensor]=None, head_mask: Optional[torch.Tensor]=None, past_key_values: Optional[List[torch.FloatTensor]]=None, inputs_embeds: Optional[torch.FloatTensor]=None, labels: Optional[torch.LongTensor]=None, use_cache: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, return_dict: Optional[bool]=None): + + def call_og_forward(): + return self._original_forward(input_ids=input_ids, attention_mask=attention_mask, head_mask=head_mask, past_key_values=past_key_values, inputs_embeds=inputs_embeds, labels=labels, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) + if bidirectional_mask is None: + return call_og_forward() + self.model.decoder.bidirectional_mask = bidirectional_mask + try: + outputs = call_og_forward() + except: + self.model.decoder.bidirectional_mask = None + raise + self.model.decoder.bidirectional_mask = None + return outputs + + def generate(self: OPTForCausalLM, *args: tuple, **kwargs: Dict[str, Any]): + """Wraps original generate to enable PrefixLM-style attention.""" + self.model.decoder.bidirectional_mask = 'g' + try: + output = self._original_generate(*args, **kwargs) + except: + self.model.decoder.bidirectional_mask = None + raise + self.model.decoder.bidirectional_mask = None + return output + setattr(model, 'forward', MethodType(forward, model)) + setattr(model, 'generate', MethodType(generate, model)) + setattr(model, '_prefix_lm_converted', True) + return model +_SUPPORTED_HF_MODELS = _SUPPORTED_GPT_MODELS + (BloomForCausalLM, OPTForCausalLM) +CAUSAL_LM_TYPES = Union[GPT2LMHeadModel, GPTJForCausalLM, GPTNeoForCausalLM, GPTNeoXForCausalLM, BloomForCausalLM, OPTForCausalLM] + +def convert_hf_causal_lm_to_prefix_lm(model: CAUSAL_LM_TYPES) -> CAUSAL_LM_TYPES: + """Converts a HuggingFace Causal LM to a Prefix LM. + + Supported HuggingFace model classes: + - `GPT2LMHeadModel` + - `GPTNeoForCausalLM` + - `GPTNeoXForCausalLM` + - `GPTJForCausalLM` + - `BloomForCausalLM` + - `OPTForCausalLM` + + Conversion to a Prefix LM is done by modifying the `forward` method, and possibly also the + `generate` method and/or select underlying methods depending on the model class. + + These changes preserve the model API, but add a new input to `forward`: "bidirectional_mask". + + Notes on training: + To actually train the converted model as a Prefix LM, training batches will need to indicate + the prefix/target structure by including `bidirectional_mask` as part of the batch inputs. + + **This is not a standard input and requires custom layers either within or after your dataloader.** + + In addition to adding `bidirectional_mask` to the batch, this custom code should modify `labels` + such that `batch['labels'][batch['bidirectional_mask'] == 1] == -100`. + That is, the prefix portion of the sequence should not generate any loss. Loss should only be + generated by the target portion of the sequence. + + Notes on `GPTNeoForCausalLM`: + To simplify the implementation, "global" and "local" attention layers are handled differently. + For "global" layers, we handle conversion as described above. For "local" layers, which use a + causal attention mask within a restricted local window, we do not alter the masking. + + Notes on `forward` method conversion: + After conversion, the `forward` method will handle a new input, `bidirectional_mask`, + which should be a [batch_size, seq_length] byte tensor, where 1 indicates token positions + belonging to the prefix (prefix tokens can attend to one another bidirectionally), and + 0 indicates token positions belonging to the target. + + The new `forward` method will incorporate `bidirectional_mask` (if supplied) into the existing + causal mask, call the original `forward` method, and (if the causal mask is a buffer) reset + the causal masks before returning the result. + + Notes on `generate` method conversion: + After conversion, the `generate` method will have the same signature but will internally + convert all causal masks to be purely bidirectional, call the original `generate` method, and + (where appropriate) reset the causal masks before returning the result. + + This works thanks to the logic of the HuggingFace `generate` API, which first encodes the token + "prompt" passed to `generate` (which is treated as the prefix) and then sequentially generates + each new token. Encodings are cached as generation happens, so all prefix tokens can attend to one + another (as expected in a Prefix LM) and generated tokens can only attend to prefix tokens and + previously-generated tokens (also as expected in a Prefix LM). + + To preserve the API, the original methods are renamed to `_original_forward` and + `_original_generate`, and replaced with new `forward` and `generate` methods that wrap + them, respectively. Although implementation details vary by model class. + """ + if isinstance(model, _SUPPORTED_GPT_MODELS): + return _convert_gpt_causal_lm_to_prefix_lm(model) + elif isinstance(model, BloomForCausalLM): + return _convert_bloom_causal_lm_to_prefix_lm(model) + elif isinstance(model, OPTForCausalLM): + return _convert_opt_causal_lm_to_prefix_lm(model) + else: + raise TypeError(f'Cannot convert model to Prefix LM. ' + f'Model does not belong to set of supported HF models:' + f'\n{_SUPPORTED_HF_MODELS}') + +def add_bidirectional_mask_if_missing(batch: Dict[str, Any]): + """Attempts to add bidirectional_mask to batch if missing. + + Raises: + KeyError if bidirectional_mask is missing and can't be inferred + """ + if 'bidirectional_mask' not in batch: + if batch.get('mode', None) == 'icl_task': + batch['bidirectional_mask'] = batch['attention_mask'].clone() + for (i, continuation_indices) in enumerate(batch['continuation_indices']): + batch['bidirectional_mask'][i, continuation_indices] = 0 + elif 'labels' in batch and 'attention_mask' in batch: + batch['bidirectional_mask'] = torch.logical_and(torch.eq(batch['attention_mask'], 1), torch.eq(batch['labels'], -100)).type_as(batch['attention_mask']) + else: + raise KeyError('No bidirectional_mask in batch and not sure how to construct one.') \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/meta_init_context.py b/Geo/GeochatP-main/geochat/model/language_model/mpt/meta_init_context.py new file mode 100644 index 0000000000000000000000000000000000000000..6cba6fff0fe21fe222c7ab38eae44a9784c0be9c --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/mpt/meta_init_context.py @@ -0,0 +1,94 @@ +from contextlib import contextmanager +import torch +import torch.nn as nn + +@contextmanager +def init_empty_weights(include_buffers: bool=False): + """Meta initialization context manager. + + A context manager under which models are initialized with all parameters + on the meta device, therefore creating an empty model. Useful when just + initializing the model would blow the available RAM. + + Args: + include_buffers (`bool`, *optional*, defaults to `False`): Whether or + not to also put all buffers on the meta device while initializing. + + Example: + ```python + import torch.nn as nn + + # Initialize a model with 100 billions parameters in no time and without using any RAM. + with init_empty_weights(): + tst = nn.Sequential(*[nn.Linear(10000, 10000) for _ in range(1000)]) + ``` + + + + Any model created under this context manager has no weights. As such you can't do something like + `model.to(some_device)` with it. To load weights inside your empty model, see [`load_checkpoint_and_dispatch`]. + + + """ + with init_on_device(torch.device('meta'), include_buffers=include_buffers) as f: + yield f + +@contextmanager +def init_on_device(device: torch.device, include_buffers: bool=False): + """Device initialization context manager. + + A context manager under which models are initialized with all parameters + on the specified device. + + Args: + device (`torch.device`): Device to initialize all parameters on. + include_buffers (`bool`, *optional*, defaults to `False`): Whether or + not to also put all buffers on the meta device while initializing. + + Example: + ```python + import torch.nn as nn + + with init_on_device(device=torch.device("cuda")): + tst = nn.Liner(100, 100) # on `cuda` device + ``` + """ + old_register_parameter = nn.Module.register_parameter + if include_buffers: + old_register_buffer = nn.Module.register_buffer + + def register_empty_parameter(module, name, param): + old_register_parameter(module, name, param) + if param is not None: + param_cls = type(module._parameters[name]) + kwargs = module._parameters[name].__dict__ + module._parameters[name] = param_cls(module._parameters[name].to(device), **kwargs) + + def register_empty_buffer(module, name, buffer): + old_register_buffer(module, name, buffer) + if buffer is not None: + module._buffers[name] = module._buffers[name].to(device) + if include_buffers: + tensor_constructors_to_patch = {torch_function_name: getattr(torch, torch_function_name) for torch_function_name in ['empty', 'zeros', 'ones', 'full']} + else: + tensor_constructors_to_patch = {} + + def patch_tensor_constructor(fn): + + def wrapper(*args, **kwargs): + kwargs['device'] = device + return fn(*args, **kwargs) + return wrapper + try: + nn.Module.register_parameter = register_empty_parameter + if include_buffers: + nn.Module.register_buffer = register_empty_buffer + for torch_function_name in tensor_constructors_to_patch.keys(): + setattr(torch, torch_function_name, patch_tensor_constructor(getattr(torch, torch_function_name))) + yield + finally: + nn.Module.register_parameter = old_register_parameter + if include_buffers: + nn.Module.register_buffer = old_register_buffer + for (torch_function_name, old_torch_function) in tensor_constructors_to_patch.items(): + setattr(torch, torch_function_name, old_torch_function) \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/modeling_mpt.py b/Geo/GeochatP-main/geochat/model/language_model/mpt/modeling_mpt.py new file mode 100644 index 0000000000000000000000000000000000000000..13313441b13fc7a66cb65fd21b482a5de982e2c8 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/mpt/modeling_mpt.py @@ -0,0 +1,331 @@ +"""A simple, flexible implementation of a GPT model. + +Inspired by https://github.com/karpathy/minGPT/blob/master/mingpt/model.py +""" +import math +import warnings +from typing import List, Optional, Tuple, Union +import torch +import torch.nn as nn +import torch.nn.functional as F +from transformers import PreTrainedModel, PreTrainedTokenizer, PreTrainedTokenizerFast +from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast +from .attention import attn_bias_shape, build_attn_bias +from .blocks import MPTBlock +from .custom_embedding import SharedEmbedding +from .norm import NORM_CLASS_REGISTRY +from .configuration_mpt import MPTConfig +from .adapt_tokenizer import AutoTokenizerForMOD, adapt_tokenizer_for_denoising +from .hf_prefixlm_converter import add_bidirectional_mask_if_missing, convert_hf_causal_lm_to_prefix_lm +from .meta_init_context import init_empty_weights +from .param_init_fns import MODEL_INIT_REGISTRY, generic_param_init_fn_ +try: + from .flash_attn_triton import flash_attn_func +except: + pass +Tokenizer = Union[PreTrainedTokenizer, PreTrainedTokenizerFast] + +class MPTPreTrainedModel(PreTrainedModel): + config_class = MPTConfig + base_model_prefix = 'model' + _no_split_modules = ['MPTBlock'] + +class MPTModel(MPTPreTrainedModel): + + def __init__(self, config: MPTConfig): + config._validate_config() + super().__init__(config) + self.attn_impl = config.attn_config['attn_impl'] + self.prefix_lm = config.attn_config['prefix_lm'] + self.attn_uses_sequence_id = config.attn_config['attn_uses_sequence_id'] + self.alibi = config.attn_config['alibi'] + self.alibi_bias_max = config.attn_config['alibi_bias_max'] + if config.init_device == 'mixed': + if dist.get_local_rank() == 0: + config.init_device = 'cpu' + else: + config.init_device = 'meta' + if config.norm_type.lower() not in NORM_CLASS_REGISTRY.keys(): + norm_options = ' | '.join(NORM_CLASS_REGISTRY.keys()) + raise NotImplementedError(f'Requested norm type ({config.norm_type}) is not implemented within this repo (Options: {norm_options}).') + norm_class = NORM_CLASS_REGISTRY[config.norm_type.lower()] + self.embedding_fraction = config.embedding_fraction + self.wte = SharedEmbedding(config.vocab_size, config.d_model, device=config.init_device) + if not self.alibi: + self.wpe = torch.nn.Embedding(config.max_seq_len, config.d_model, device=config.init_device) + self.emb_drop = nn.Dropout(config.emb_pdrop) + self.blocks = nn.ModuleList([MPTBlock(device=config.init_device, **config.to_dict()) for _ in range(config.n_layers)]) + self.norm_f = norm_class(config.d_model, device=config.init_device) + if config.init_device != 'meta': + print(f'You are using config.init_device={config.init_device!r}, but you can also use config.init_device="meta" with Composer + FSDP for fast initialization.') + self.apply(self.param_init_fn) + self.is_causal = not self.prefix_lm + self._attn_bias_initialized = False + self.attn_bias = None + self.attn_bias_shape = attn_bias_shape(self.attn_impl, config.n_heads, config.max_seq_len, self.alibi, prefix_lm=self.prefix_lm, causal=self.is_causal, use_sequence_id=self.attn_uses_sequence_id) + if config.no_bias: + for module in self.modules(): + if hasattr(module, 'bias') and isinstance(module.bias, nn.Parameter): + if config.verbose: + warnings.warn(f'Removing bias ({module.bias}) from {module}.') + module.register_parameter('bias', None) + if config.verbose and config.verbose > 2: + print(self) + if 'verbose' not in self.config.init_config: + self.config.init_config['verbose'] = self.config.verbose + if self.config.init_config['verbose'] > 1: + init_fn_name = self.config.init_config['name'] + warnings.warn(f'Using {init_fn_name} initialization.') + self.gradient_checkpointing = False + + def get_input_embeddings(self): + return self.wte + + def set_input_embeddings(self, value): + self.wte = value + + @torch.no_grad() + def _attn_bias(self, device, dtype, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None): + if not self._attn_bias_initialized: + if self.attn_bias_shape: + self.attn_bias = torch.zeros(self.attn_bias_shape, device=device, dtype=dtype) + self.attn_bias = build_attn_bias(self.attn_impl, self.attn_bias, self.config.n_heads, self.config.max_seq_len, causal=self.is_causal, alibi=self.alibi, alibi_bias_max=self.alibi_bias_max) + self._attn_bias_initialized = True + if self.attn_impl == 'flash': + return (self.attn_bias, attention_mask) + if self.attn_bias is not None: + self.attn_bias = self.attn_bias.to(dtype=dtype, device=device) + attn_bias = self.attn_bias + if self.prefix_lm: + assert isinstance(attn_bias, torch.Tensor) + assert isinstance(prefix_mask, torch.Tensor) + attn_bias = self._apply_prefix_mask(attn_bias, prefix_mask) + if self.attn_uses_sequence_id and sequence_id is not None: + assert isinstance(attn_bias, torch.Tensor) + attn_bias = self._apply_sequence_id(attn_bias, sequence_id) + if attention_mask is not None: + s_k = attention_mask.shape[-1] + if attn_bias is None: + attn_bias = torch.zeros((1, 1, 1, s_k), device=device, dtype=dtype) + else: + _s_k = max(0, attn_bias.size(-1) - s_k) + attn_bias = attn_bias[:, :, :, _s_k:] + if prefix_mask is not None and attention_mask.shape != prefix_mask.shape: + raise ValueError(f'attention_mask shape={attention_mask.shape} ' + f'and prefix_mask shape={prefix_mask.shape} are not equal.') + min_val = torch.finfo(attn_bias.dtype).min + attn_bias = attn_bias.masked_fill(~attention_mask.view(-1, 1, 1, s_k), min_val) + return (attn_bias, None) + + def _apply_prefix_mask(self, attn_bias: torch.Tensor, prefix_mask: torch.Tensor): + (s_k, s_q) = attn_bias.shape[-2:] + if s_k != self.config.max_seq_len or s_q != self.config.max_seq_len: + raise ValueError('attn_bias does not match the expected shape. ' + f'The last two dimensions should both be {self.config.max_length} ' + f'but are {s_k} and {s_q}.') + seq_len = prefix_mask.shape[-1] + if seq_len > self.config.max_seq_len: + raise ValueError(f'prefix_mask sequence length cannot exceed max_seq_len={self.config.max_seq_len}') + attn_bias = attn_bias[..., :seq_len, :seq_len] + causal = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool, device=prefix_mask.device)).view(1, 1, seq_len, seq_len) + prefix = prefix_mask.view(-1, 1, 1, seq_len) + cannot_attend = ~torch.logical_or(causal, prefix.bool()) + min_val = torch.finfo(attn_bias.dtype).min + attn_bias = attn_bias.masked_fill(cannot_attend, min_val) + return attn_bias + + def _apply_sequence_id(self, attn_bias: torch.Tensor, sequence_id: torch.LongTensor): + seq_len = sequence_id.shape[-1] + if seq_len > self.config.max_seq_len: + raise ValueError(f'sequence_id sequence length cannot exceed max_seq_len={self.config.max_seq_len}') + attn_bias = attn_bias[..., :seq_len, :seq_len] + cannot_attend = torch.logical_not(torch.eq(sequence_id.view(-1, seq_len, 1), sequence_id.view(-1, 1, seq_len))).unsqueeze(1) + min_val = torch.finfo(attn_bias.dtype).min + attn_bias = attn_bias.masked_fill(cannot_attend, min_val) + return attn_bias + + def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.Tensor]=None): + return_dict = return_dict if return_dict is not None else self.config.return_dict + use_cache = use_cache if use_cache is not None else self.config.use_cache + if attention_mask is not None: + attention_mask = attention_mask.bool() + if prefix_mask is not None: + prefix_mask = prefix_mask.bool() + if not return_dict: + raise NotImplementedError('return_dict False is not implemented yet for MPT') + if output_attentions: + if self.attn_impl != 'torch': + raise NotImplementedError('output_attentions is not implemented for MPT when using attn_impl `flash` or `triton`.') + if attention_mask is not None and attention_mask[:, 0].sum() != attention_mask.shape[0] and self.training: + raise NotImplementedError('MPT does not support training with left padding.') + if self.prefix_lm and prefix_mask is None: + raise ValueError('prefix_mask is a required argument when MPT is configured with prefix_lm=True.') + if self.training: + if self.attn_uses_sequence_id and sequence_id is None: + raise ValueError('sequence_id is a required argument when MPT is configured with attn_uses_sequence_id=True ' + 'and the model is in train mode.') + elif self.attn_uses_sequence_id is False and sequence_id is not None: + warnings.warn('MPT received non-None input for `sequence_id` but is configured with attn_uses_sequence_id=False. ' + 'This input will be ignored. If you want the model to use `sequence_id`, set attn_uses_sequence_id to True.') + if input_ids is not None: + S = input_ids.size(1) + assert S <= self.config.max_seq_len, f'Cannot forward input with seq_len={S}, this model only supports seq_len<={self.config.max_seq_len}' + tok_emb = self.wte(input_ids) + else: + assert inputs_embeds is not None + assert self.alibi, 'inputs_embeds is not implemented for MPT unless for alibi.' + S = inputs_embeds.size(1) + tok_emb = inputs_embeds + if self.alibi: + x = tok_emb + else: + past_position = 0 + if past_key_values is not None: + if len(past_key_values) != self.config.n_layers: + raise ValueError(f'past_key_values must provide a past_key_value for each attention ' + f'layer in the network (len(past_key_values)={len(past_key_values)!r}; self.config.n_layers={self.config.n_layers!r}).') + past_position = past_key_values[0][0].size(1) + if self.attn_impl == 'torch': + past_position = past_key_values[0][0].size(3) + if S + past_position > self.config.max_seq_len: + raise ValueError(f'Cannot forward input with past sequence length {past_position} and current sequence length {S + 1}, this model only supports total sequence length <= {self.config.max_seq_len}.') + pos = torch.arange(past_position, S + past_position, dtype=torch.long, device=input_ids.device).unsqueeze(0) + if attention_mask is not None: + pos = torch.clamp(pos - torch.cumsum((~attention_mask).to(torch.int32), dim=1)[:, past_position:], min=0) + pos_emb = self.wpe(pos) + x = tok_emb + pos_emb + if self.embedding_fraction == 1: + x = self.emb_drop(x) + else: + x_shrunk = x * self.embedding_fraction + x.detach() * (1 - self.embedding_fraction) + assert isinstance(self.emb_drop, nn.Module) + x = self.emb_drop(x_shrunk) + (attn_bias, attention_mask) = self._attn_bias(device=x.device, dtype=torch.float32, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id) + if use_cache and past_key_values is None: + past_key_values = [() for _ in range(self.config.n_layers)] + all_hidden_states = () if output_hidden_states else None + all_self_attns = () if output_attentions else None + for (b_idx, block) in enumerate(self.blocks): + if output_hidden_states: + assert all_hidden_states is not None + all_hidden_states = all_hidden_states + (x,) + past_key_value = past_key_values[b_idx] if past_key_values is not None else None + if self.gradient_checkpointing and self.training: + (x, attn_weights, past_key_value) = torch.utils.checkpoint.checkpoint(block, x, past_key_value, attn_bias, attention_mask, self.is_causal) + else: + (x, attn_weights, past_key_value) = block(x, past_key_value=past_key_value, attn_bias=attn_bias, attention_mask=attention_mask, is_causal=self.is_causal) + if past_key_values is not None: + past_key_values[b_idx] = past_key_value + if output_attentions: + assert all_self_attns is not None + all_self_attns = all_self_attns + (attn_weights,) + x = self.norm_f(x) + if output_hidden_states: + assert all_hidden_states is not None + all_hidden_states = all_hidden_states + (x,) + return BaseModelOutputWithPast(last_hidden_state=x, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_self_attns) + + def param_init_fn(self, module): + init_fn_name = self.config.init_config['name'] + MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) + + def fsdp_wrap_fn(self, module): + return isinstance(module, MPTBlock) + + def activation_checkpointing_fn(self, module): + return isinstance(module, MPTBlock) + +class MPTForCausalLM(MPTPreTrainedModel): + + def __init__(self, config: MPTConfig): + super().__init__(config) + if not config.tie_word_embeddings: + raise ValueError('MPTForCausalLM only supports tied word embeddings') + print(f'Instantiating an MPTForCausalLM model from {__file__}') + self.transformer = MPTModel(config) + for child in self.transformer.children(): + if isinstance(child, torch.nn.ModuleList): + continue + if isinstance(child, torch.nn.Module): + child._fsdp_wrap = True + self.logit_scale = None + if config.logit_scale is not None: + logit_scale = config.logit_scale + if isinstance(logit_scale, str): + if logit_scale == 'inv_sqrt_d_model': + logit_scale = 1 / math.sqrt(config.d_model) + else: + raise ValueError(f"logit_scale={logit_scale!r} is not recognized as an option; use numeric value or 'inv_sqrt_d_model'.") + self.logit_scale = logit_scale + + def get_input_embeddings(self): + return self.transformer.wte + + def set_input_embeddings(self, value): + self.transformer.wte = value + + def get_output_embeddings(self): + return self.transformer.wte + + def set_output_embeddings(self, new_embeddings): + self.transformer.wte = new_embeddings + + def set_decoder(self, decoder): + self.transformer = decoder + + def get_decoder(self): + return self.transformer + + def forward(self, input_ids: torch.LongTensor, past_key_values: Optional[List[Tuple[torch.FloatTensor]]]=None, attention_mask: Optional[torch.ByteTensor]=None, prefix_mask: Optional[torch.ByteTensor]=None, sequence_id: Optional[torch.LongTensor]=None, labels: Optional[torch.LongTensor]=None, return_dict: Optional[bool]=None, output_attentions: Optional[bool]=None, output_hidden_states: Optional[bool]=None, use_cache: Optional[bool]=None, inputs_embeds: Optional[torch.FloatTensor]=None): + return_dict = return_dict if return_dict is not None else self.config.return_dict + use_cache = use_cache if use_cache is not None else self.config.use_cache + if inputs_embeds is not None: + raise NotImplementedError('inputs_embeds has to be None (for hf/peft support).') + outputs = self.transformer(input_ids=input_ids, past_key_values=past_key_values, attention_mask=attention_mask, prefix_mask=prefix_mask, sequence_id=sequence_id, return_dict=return_dict, output_attentions=output_attentions, output_hidden_states=output_hidden_states, use_cache=use_cache) + logits = self.transformer.wte(outputs.last_hidden_state.to(self.transformer.wte.weight.device), True) + if self.logit_scale is not None: + if self.logit_scale == 0: + warnings.warn(f'Multiplying logits by self.logit_scale={self.logit_scale!r}. This will produce uniform (uninformative) outputs.') + logits *= self.logit_scale + loss = None + if labels is not None: + labels = torch.roll(labels, shifts=-1) + labels[:, -1] = -100 + loss = F.cross_entropy(logits.view(-1, logits.size(-1)), labels.to(logits.device).view(-1)) + return CausalLMOutputWithPast(loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions) + + def param_init_fn(self, module): + init_fn_name = self.config.init_config['name'] + MODEL_INIT_REGISTRY[init_fn_name](module=module, n_layers=self.config.n_layers, d_model=self.config.d_model, **self.config.init_config) + + def fsdp_wrap_fn(self, module): + return isinstance(module, MPTBlock) + + def activation_checkpointing_fn(self, module): + return isinstance(module, MPTBlock) + + def prepare_inputs_for_generation(self, input_ids, past_key_values=None, inputs_embeds=None, **kwargs): + if inputs_embeds is not None: + raise NotImplementedError('inputs_embeds is not implemented for MPT yet') + attention_mask = kwargs['attention_mask'].bool() + if attention_mask[:, -1].sum() != attention_mask.shape[0]: + raise NotImplementedError('MPT does not support generation with right padding.') + if self.transformer.attn_uses_sequence_id and self.training: + sequence_id = torch.zeros_like(input_ids[:1]) + else: + sequence_id = None + if past_key_values is not None: + input_ids = input_ids[:, -1].unsqueeze(-1) + if self.transformer.prefix_lm: + prefix_mask = torch.ones_like(attention_mask) + if kwargs.get('use_cache') == False: + raise NotImplementedError('MPT with prefix_lm=True does not support use_cache=False.') + else: + prefix_mask = None + return {'input_ids': input_ids, 'attention_mask': attention_mask, 'prefix_mask': prefix_mask, 'sequence_id': sequence_id, 'past_key_values': past_key_values, 'use_cache': kwargs.get('use_cache', True)} + + @staticmethod + def _reorder_cache(past_key_values, beam_idx): + """Used by HuggingFace generate when using beam search with kv-caching. + + See https://github.com/huggingface/transformers/blob/3ec7a47664ebe40c40f4b722f6bb1cd30c3821ec/src/transformers/models/gpt2/modeling_gpt2.py#L1122-L1133 + for an example in transformers. + """ + reordered_past = [] + for layer_past in past_key_values: + reordered_past += [tuple((past_state.index_select(0, beam_idx) for past_state in layer_past))] + return reordered_past \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/norm.py b/Geo/GeochatP-main/geochat/model/language_model/mpt/norm.py new file mode 100644 index 0000000000000000000000000000000000000000..067b6140fae546e5cb49cb2b1e4e6af660ced60d --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/mpt/norm.py @@ -0,0 +1,56 @@ +import torch + +def _cast_if_autocast_enabled(tensor): + if torch.is_autocast_enabled(): + if tensor.device.type == 'cuda': + dtype = torch.get_autocast_gpu_dtype() + elif tensor.device.type == 'cpu': + dtype = torch.get_autocast_cpu_dtype() + else: + raise NotImplementedError() + return tensor.to(dtype=dtype) + return tensor + +class LPLayerNorm(torch.nn.LayerNorm): + + def __init__(self, normalized_shape, eps=1e-05, elementwise_affine=True, device=None, dtype=None): + super().__init__(normalized_shape=normalized_shape, eps=eps, elementwise_affine=elementwise_affine, device=device, dtype=dtype) + + def forward(self, x): + module_device = x.device + downcast_x = _cast_if_autocast_enabled(x) + downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight + downcast_bias = _cast_if_autocast_enabled(self.bias) if self.bias is not None else self.bias + with torch.autocast(enabled=False, device_type=module_device.type): + return torch.nn.functional.layer_norm(downcast_x, self.normalized_shape, downcast_weight, downcast_bias, self.eps) + +def rms_norm(x, weight=None, eps=1e-05): + output = x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + eps) + if weight is not None: + return output * weight + return output + +class RMSNorm(torch.nn.Module): + + def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None): + super().__init__() + self.eps = eps + if weight: + self.weight = torch.nn.Parameter(torch.ones(normalized_shape, dtype=dtype, device=device)) + else: + self.register_parameter('weight', None) + + def forward(self, x): + return rms_norm(x.float(), self.weight, self.eps).to(dtype=x.dtype) + +class LPRMSNorm(RMSNorm): + + def __init__(self, normalized_shape, eps=1e-05, weight=True, dtype=None, device=None): + super().__init__(normalized_shape=normalized_shape, eps=eps, weight=weight, dtype=dtype, device=device) + + def forward(self, x): + downcast_x = _cast_if_autocast_enabled(x) + downcast_weight = _cast_if_autocast_enabled(self.weight) if self.weight is not None else self.weight + with torch.autocast(enabled=False, device_type=x.device.type): + return rms_norm(downcast_x, downcast_weight, self.eps).to(dtype=x.dtype) +NORM_CLASS_REGISTRY = {'layernorm': torch.nn.LayerNorm, 'low_precision_layernorm': LPLayerNorm, 'rmsnorm': RMSNorm, 'low_precision_rmsnorm': LPRMSNorm} \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/model/language_model/mpt/param_init_fns.py b/Geo/GeochatP-main/geochat/model/language_model/mpt/param_init_fns.py new file mode 100644 index 0000000000000000000000000000000000000000..418b83ca2363288046f4b48b1d706c5607341fb5 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/language_model/mpt/param_init_fns.py @@ -0,0 +1,181 @@ +import math +import warnings +from collections.abc import Sequence +from functools import partial +from typing import Optional, Tuple, Union +import torch +from torch import nn +from .norm import NORM_CLASS_REGISTRY + +def torch_default_param_init_fn_(module: nn.Module, verbose: int=0, **kwargs): + del kwargs + if verbose > 1: + warnings.warn(f"Initializing network using module's reset_parameters attribute") + if hasattr(module, 'reset_parameters'): + module.reset_parameters() + +def fused_init_helper_(module: nn.Module, init_fn_): + _fused = getattr(module, '_fused', None) + if _fused is None: + raise RuntimeError(f'Internal logic error') + (dim, splits) = _fused + splits = (0, *splits, module.weight.size(dim)) + for (s, e) in zip(splits[:-1], splits[1:]): + slice_indices = [slice(None)] * module.weight.ndim + slice_indices[dim] = slice(s, e) + init_fn_(module.weight[slice_indices]) + +def generic_param_init_fn_(module: nn.Module, init_fn_, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs): + del kwargs + if verbose > 1: + warnings.warn(f'If model has bias parameters they are initialized to 0.') + init_div_is_residual = init_div_is_residual + if init_div_is_residual is False: + div_is_residual = 1.0 + elif init_div_is_residual is True: + div_is_residual = math.sqrt(2 * n_layers) + elif isinstance(init_div_is_residual, float) or isinstance(init_div_is_residual, int): + div_is_residual = init_div_is_residual + elif isinstance(init_div_is_residual, str) and init_div_is_residual.isnumeric(): + div_is_residual = float(init_div_is_residual) + else: + div_is_residual = 1.0 + raise ValueError(f'Expected init_div_is_residual to be boolean or numeric, got {init_div_is_residual}') + if init_div_is_residual is not False: + if verbose > 1: + warnings.warn(f'Initializing _is_residual layers then dividing them by {div_is_residual:.3f}. ' + f'Set `init_div_is_residual: false` in init config to disable this.') + if isinstance(module, nn.Linear): + if hasattr(module, '_fused'): + fused_init_helper_(module, init_fn_) + else: + init_fn_(module.weight) + if module.bias is not None: + torch.nn.init.zeros_(module.bias) + if init_div_is_residual is not False and getattr(module, '_is_residual', False): + with torch.no_grad(): + module.weight.div_(div_is_residual) + elif isinstance(module, nn.Embedding): + if emb_init_std is not None: + std = emb_init_std + if std == 0: + warnings.warn(f'Embedding layer initialized to 0.') + emb_init_fn_ = partial(torch.nn.init.normal_, mean=0.0, std=std) + if verbose > 1: + warnings.warn(f'Embedding layer initialized using normal distribution with mean=0 and std={std!r}.') + elif emb_init_uniform_lim is not None: + lim = emb_init_uniform_lim + if isinstance(lim, Sequence): + if len(lim) > 2: + raise ValueError(f'Uniform init requires a min and a max limit. User input: {lim}.') + if lim[0] == lim[1]: + warnings.warn(f'Embedding layer initialized to {lim[0]}.') + else: + if lim == 0: + warnings.warn(f'Embedding layer initialized to 0.') + lim = [-lim, lim] + (a, b) = lim + emb_init_fn_ = partial(torch.nn.init.uniform_, a=a, b=b) + if verbose > 1: + warnings.warn(f'Embedding layer initialized using uniform distribution in range {lim}.') + else: + emb_init_fn_ = init_fn_ + emb_init_fn_(module.weight) + elif isinstance(module, tuple(set(NORM_CLASS_REGISTRY.values()))): + if verbose > 1: + warnings.warn(f'Norm weights are set to 1. If norm layer has a bias it is initialized to 0.') + if hasattr(module, 'weight') and module.weight is not None: + torch.nn.init.ones_(module.weight) + if hasattr(module, 'bias') and module.bias is not None: + torch.nn.init.zeros_(module.bias) + elif isinstance(module, nn.MultiheadAttention): + if module._qkv_same_embed_dim: + assert module.in_proj_weight is not None + assert module.q_proj_weight is None and module.k_proj_weight is None and (module.v_proj_weight is None) + assert d_model is not None + _d = d_model + splits = (0, _d, 2 * _d, 3 * _d) + for (s, e) in zip(splits[:-1], splits[1:]): + init_fn_(module.in_proj_weight[s:e]) + else: + assert module.q_proj_weight is not None and module.k_proj_weight is not None and (module.v_proj_weight is not None) + assert module.in_proj_weight is None + init_fn_(module.q_proj_weight) + init_fn_(module.k_proj_weight) + init_fn_(module.v_proj_weight) + if module.in_proj_bias is not None: + torch.nn.init.zeros_(module.in_proj_bias) + if module.bias_k is not None: + torch.nn.init.zeros_(module.bias_k) + if module.bias_v is not None: + torch.nn.init.zeros_(module.bias_v) + init_fn_(module.out_proj.weight) + if init_div_is_residual is not False and getattr(module.out_proj, '_is_residual', False): + with torch.no_grad(): + module.out_proj.weight.div_(div_is_residual) + if module.out_proj.bias is not None: + torch.nn.init.zeros_(module.out_proj.bias) + else: + for _ in module.parameters(recurse=False): + raise NotImplementedError(f'{module.__class__.__name__} parameters are not initialized by param_init_fn.') + +def _normal_init_(std, mean=0.0): + return partial(torch.nn.init.normal_, mean=mean, std=std) + +def _normal_param_init_fn_(module: nn.Module, std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs): + del kwargs + init_fn_ = _normal_init_(std=std) + if verbose > 1: + warnings.warn(f'Using torch.nn.init.normal_ init fn mean=0.0, std={std}') + generic_param_init_fn_(module=module, init_fn_=init_fn_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose) + +def baseline_param_init_fn_(module: nn.Module, init_std: float, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs): + del kwargs + if init_std is None: + raise ValueError("You must set model.init_config['init_std'] to a float value to use the default initialization scheme.") + _normal_param_init_fn_(module=module, std=init_std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose) + +def small_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs): + del kwargs + std = math.sqrt(2 / (5 * d_model)) + _normal_param_init_fn_(module=module, std=std, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose) + +def neox_param_init_fn_(module: nn.Module, n_layers: int, d_model: int, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, verbose: int=0, **kwargs): + """From section 2.3.1 of GPT-NeoX-20B: + + An Open-Source AutoregressiveLanguage Model — Black et. al. (2022) + see https://github.com/EleutherAI/gpt-neox/blob/9610391ab319403cef079b438edd016a2443af54/megatron/model/init_functions.py#L151 + and https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/transformer.py + """ + del kwargs + residual_div = n_layers / math.sqrt(10) + if verbose > 1: + warnings.warn(f'setting init_div_is_residual to {residual_div}') + small_param_init_fn_(module=module, d_model=d_model, n_layers=n_layers, init_div_is_residual=residual_div, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose) + +def kaiming_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs): + del kwargs + if verbose > 1: + warnings.warn(f'Using nn.init.kaiming_uniform_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}') + kaiming_uniform_ = partial(nn.init.kaiming_uniform_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity) + generic_param_init_fn_(module=module, init_fn_=kaiming_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose) + +def kaiming_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, fan_mode: str='fan_in', init_nonlinearity: str='leaky_relu', verbose: int=0, **kwargs): + del kwargs + if verbose > 1: + warnings.warn(f'Using nn.init.kaiming_normal_ init fn with parameters: ' + f'a={init_gain}, mode={fan_mode}, nonlinearity={init_nonlinearity}') + kaiming_normal_ = partial(torch.nn.init.kaiming_normal_, a=init_gain, mode=fan_mode, nonlinearity=init_nonlinearity) + generic_param_init_fn_(module=module, init_fn_=kaiming_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose) + +def xavier_uniform_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs): + del kwargs + xavier_uniform_ = partial(torch.nn.init.xavier_uniform_, gain=init_gain) + if verbose > 1: + warnings.warn(f'Using torch.nn.init.xavier_uniform_ init fn with parameters: ' + f'gain={init_gain}') + generic_param_init_fn_(module=module, init_fn_=xavier_uniform_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose) + +def xavier_normal_param_init_fn_(module: nn.Module, n_layers: int, d_model: Optional[int]=None, init_div_is_residual: Union[int, float, str, bool]=True, emb_init_std: Optional[float]=None, emb_init_uniform_lim: Optional[Union[Tuple[float, float], float]]=None, init_gain: float=0, verbose: int=0, **kwargs): + xavier_normal_ = partial(torch.nn.init.xavier_normal_, gain=init_gain) + if verbose > 1: + warnings.warn(f'Using torch.nn.init.xavier_normal_ init fn with parameters: ' + f'gain={init_gain}') + generic_param_init_fn_(module=module, init_fn_=xavier_normal_, d_model=d_model, n_layers=n_layers, init_div_is_residual=init_div_is_residual, emb_init_std=emb_init_std, emb_init_uniform_lim=emb_init_uniform_lim, verbose=verbose) +MODEL_INIT_REGISTRY = {'default_': torch_default_param_init_fn_, 'baseline_': baseline_param_init_fn_, 'kaiming_uniform_': kaiming_uniform_param_init_fn_, 'kaiming_normal_': kaiming_normal_param_init_fn_, 'neox_init_': neox_param_init_fn_, 'small_init_': small_param_init_fn_, 'xavier_uniform_': xavier_uniform_param_init_fn_, 'xavier_normal_': xavier_normal_param_init_fn_} \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/model/make_delta.py b/Geo/GeochatP-main/geochat/model/make_delta.py new file mode 100644 index 0000000000000000000000000000000000000000..3a70311c0d530e5d11db3144a8f4fc2cad0a03a7 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/make_delta.py @@ -0,0 +1,52 @@ +""" +Usage: +python3 -m llava.model.make_delta --base ~/model_weights/llama-7b --target ~/model_weights/llava-7b --delta ~/model_weights/llava-7b-delta --hub-repo-id liuhaotian/llava-7b-delta +""" +import argparse + +import torch +from tqdm import tqdm +from transformers import AutoTokenizer, AutoModelForCausalLM +from geochat.model.utils import auto_upgrade + + +def make_delta(base_model_path, target_model_path, delta_path, hub_repo_id): + print("Loading base model") + base = AutoModelForCausalLM.from_pretrained( + base_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) + + print("Loading target model") + auto_upgrade(target_model_path) + target = AutoModelForCausalLM.from_pretrained(target_model_path, torch_dtype=torch.float16, low_cpu_mem_usage=True) + + print("Calculating delta") + for name, param in tqdm(target.state_dict().items(), desc="Calculating delta"): + if name not in base.state_dict(): + assert name in ['model.mm_projector.weight', 'model.mm_projector.bias'], f'{name} not in base model' + continue + if param.data.shape == base.state_dict()[name].shape: + param.data -= base.state_dict()[name] + else: + assert name in ['model.embed_tokens.weight', 'lm_head.weight'], f'{name} dimension mismatch: {param.data.shape} vs {base.state_dict()[name].shape}' + bparam = base.state_dict()[name] + param.data[:bparam.shape[0], :bparam.shape[1]] -= bparam + + print("Saving delta") + if hub_repo_id: + kwargs = {"push_to_hub": True, "repo_id": hub_repo_id} + else: + kwargs = {} + target.save_pretrained(delta_path, **kwargs) + target_tokenizer = AutoTokenizer.from_pretrained(target_model_path) + target_tokenizer.save_pretrained(delta_path, **kwargs) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--base-model-path", type=str, required=True) + parser.add_argument("--target-model-path", type=str, required=True) + parser.add_argument("--delta-path", type=str, required=True) + parser.add_argument("--hub-repo-id", type=str, default=None) + args = parser.parse_args() + + make_delta(args.base_model_path, args.target_model_path, args.delta_path, args.hub_repo_id) diff --git a/Geo/GeochatP-main/geochat/model/multimodal_encoder/builder.py b/Geo/GeochatP-main/geochat/model/multimodal_encoder/builder.py new file mode 100644 index 0000000000000000000000000000000000000000..2b13589d4e55af529fe0838c4130c2033ac10478 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/multimodal_encoder/builder.py @@ -0,0 +1,11 @@ +import os +from .clip_encoder import CLIPVisionTower + + +def build_vision_tower(vision_tower_cfg, **kwargs): + vision_tower = getattr(vision_tower_cfg, 'mm_vision_tower', getattr(vision_tower_cfg, 'vision_tower', None)) + is_absolute_path_exists = os.path.exists(vision_tower) + if is_absolute_path_exists or vision_tower.startswith("openai") or vision_tower.startswith("laion"): + return CLIPVisionTower(vision_tower, args=vision_tower_cfg, **kwargs) + + raise ValueError(f'Unknown vision tower: {vision_tower}') diff --git a/Geo/GeochatP-main/geochat/model/multimodal_encoder/clip_encoder.py b/Geo/GeochatP-main/geochat/model/multimodal_encoder/clip_encoder.py new file mode 100644 index 0000000000000000000000000000000000000000..220f7a2ac82eab97c7d25f94c8d5230955da10f0 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/multimodal_encoder/clip_encoder.py @@ -0,0 +1,160 @@ +import torch +import torch.nn as nn +import math +from PIL import ImageFile +ImageFile.LOAD_TRUNCATED_IMAGES = True +from transformers import CLIPVisionModel, CLIPImageProcessor, CLIPVisionConfig + + +class CLIPVisionTower(nn.Module): + def clip_interpolate_embeddings(self, image_size=600, patch_size= 14): + """This function helps interpolating positional embeddings during checkpoint loading, + especially when you want to apply a pre-trained model on images with different resolution. + + Args: + image_size (int): Image size of the new model. + patch_size (int): Patch size of the new model. + model_state (OrderedDict[str, torch.Tensor]): State dict of the pre-trained model. + interpolation_mode (str): The algorithm used for upsampling. Default: bicubic. + reset_heads (bool): If true, not copying the state of heads. Default: False. + + Returns: + OrderedDict[str, torch.Tensor]: A state dict which can be loaded into the new model. + """ + # Shape of pos_embedding is (1, seq_length, hidden_dim) + state_dict = self.vision_tower.vision_model.embeddings.position_embedding.state_dict() + pos_embedding = state_dict['weight'] + pos_embedding = pos_embedding.unsqueeze(0) + n, seq_length, hidden_dim = pos_embedding.shape + if n != 1: + raise ValueError(f"Unexpected position embedding shape: {pos_embedding.shape}") + + new_seq_length = (image_size // patch_size) ** 2 + 1 + + # Need to interpolate the weights for the position embedding. + # We do this by reshaping the positions embeddings to a 2d grid, performing + # an interpolation in the (h, w) space and then reshaping back to a 1d grid. + if new_seq_length != seq_length: + # The class token embedding shouldn't be interpolated so we split it up. + seq_length -= 1 + new_seq_length -= 1 + pos_embedding_token = pos_embedding[:, :1, :] + pos_embedding_img = pos_embedding[:, 1:, :] + + # (1, seq_length, hidden_dim) -> (1, hidden_dim, seq_length) + pos_embedding_img = pos_embedding_img.permute(0, 2, 1) + seq_length_1d = int(math.sqrt(seq_length)) + torch._assert(seq_length_1d * seq_length_1d == seq_length, "seq_length is not a perfect square!") + + # (1, hidden_dim, seq_length) -> (1, hidden_dim, seq_l_1d, seq_l_1d) + pos_embedding_img = pos_embedding_img.reshape(1, hidden_dim, seq_length_1d, seq_length_1d) + new_seq_length_1d = image_size // patch_size + + # Perform interpolation. + # (1, hidden_dim, seq_l_1d, seq_l_1d) -> (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) + new_pos_embedding_img = nn.functional.interpolate( + pos_embedding_img, + size=new_seq_length_1d, + mode='bicubic', + align_corners=True, + ) + + # (1, hidden_dim, new_seq_l_1d, new_seq_l_1d) -> (1, hidden_dim, new_seq_length) + new_pos_embedding_img = new_pos_embedding_img.reshape(1, hidden_dim, new_seq_length) + + # (1, hidden_dim, new_seq_length) -> (1, new_seq_length, hidden_dim) + new_pos_embedding_img = new_pos_embedding_img.permute(0, 2, 1) + new_pos_embedding = torch.cat([pos_embedding_token, new_pos_embedding_img], dim=1)[0] + state_dict['weight'] = new_pos_embedding + self.vision_tower.vision_model.embeddings.position_embedding = nn.Embedding(new_seq_length+1, hidden_dim) + self.vision_tower.vision_model.embeddings.position_embedding.load_state_dict(state_dict) + self.vision_tower.vision_model.embeddings.image_size = image_size + self.vision_tower.vision_model.embeddings.patch_size = patch_size + self.vision_tower.vision_model.embeddings.position_ids = torch.arange(new_seq_length+1).expand((1, -1)) + + def __init__(self, vision_tower, args, delay_load=False): + super().__init__() + + self.is_loaded = False + + self.vision_tower_name = vision_tower + self.select_layer = args.mm_vision_select_layer + self.select_feature = getattr(args, 'mm_vision_select_feature', 'patch') + + if not delay_load: + self.load_model() + else: + self.cfg_only = CLIPVisionConfig.from_pretrained(self.vision_tower_name) + self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) + self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) + self.vision_tower.requires_grad_(False) + self.clip_interpolate_embeddings(image_size=504, patch_size=14) + + def load_model(self): + self.image_processor = CLIPImageProcessor.from_pretrained(self.vision_tower_name) + self.vision_tower = CLIPVisionModel.from_pretrained(self.vision_tower_name) + self.vision_tower.requires_grad_(False) + self.clip_interpolate_embeddings(image_size=504, patch_size=14) + + self.is_loaded = True + # print(self.is_loaded) + + def feature_select(self, image_forward_outs): + image_features = image_forward_outs.hidden_states[self.select_layer] + if self.select_feature == 'patch': + image_features = image_features[:, 1:] + elif self.select_feature == 'cls_patch': + image_features = image_features + else: + raise ValueError(f'Unexpected select feature: {self.select_feature}') + return image_features + + @torch.no_grad() + def forward(self, images): + if type(images) is list: + image_features = [] + for image in images: + # print(image.shape) + # import pdb; pdb.set_trace() + image_forward_out = self.vision_tower(image.to(device=self.device, dtype=self.dtype).unsqueeze(0), output_hidden_states=True) + + image_feature = self.feature_select(image_forward_out).to(image.dtype) + # print(image_features.shape) + + image_features.append(image_feature) + else: + # print(images.shape) + # import pdb; pdb.set_trace() + image_forward_outs = self.vision_tower(images.to(device=self.device, dtype=self.dtype), output_hidden_states=True) + image_features = self.feature_select(image_forward_outs).to(images.dtype) + # print(image_features.shape) + + + return image_features + + @property + def dummy_feature(self): + return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype) + + @property + def dtype(self): + return self.vision_tower.dtype + + @property + def device(self): + return self.vision_tower.device + + @property + def config(self): + if self.is_loaded: + return self.vision_tower.config + else: + return self.cfg_only + + @property + def hidden_size(self): + return self.config.hidden_size + + @property + def num_patches(self): + return (self.config.image_size // self.config.patch_size) ** 2 diff --git a/Geo/GeochatP-main/geochat/model/multimodal_projector/builder.py b/Geo/GeochatP-main/geochat/model/multimodal_projector/builder.py new file mode 100644 index 0000000000000000000000000000000000000000..b25f6089d5d61166ff70d2f9c93bcafce9cbced0 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/multimodal_projector/builder.py @@ -0,0 +1,53 @@ +import torch +import torch.nn as nn +import re + + +class IdentityMap(nn.Module): + def __init__(self): + super().__init__() + + def forward(self, x, *args, **kwargs): + return x + + @property + def config(self): + return {"mm_projector_type": 'identity'} + + +class SimpleResBlock(nn.Module): + def __init__(self, channels): + super().__init__() + self.pre_norm = nn.LayerNorm(channels) + + self.proj = nn.Sequential( + nn.Linear(channels, channels), + nn.GELU(), + nn.Linear(channels, channels) + ) + def forward(self, x): + x = self.pre_norm(x) + print(x) + + return x + self.proj(x) + + +def build_vision_projector(config, delay_load=False, **kwargs): + projector_type = getattr(config, 'mm_projector_type', 'linear') + + if projector_type == 'linear': + return nn.Linear(config.mm_hidden_size, config.hidden_size) + + mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', projector_type) + if mlp_gelu_match: + mlp_depth = int(mlp_gelu_match.group(1)) + modules = [nn.Linear(config.mm_hidden_size, config.hidden_size)] + for _ in range(1, mlp_depth): + modules.append(nn.GELU()) + modules.append(nn.Linear(config.hidden_size, config.hidden_size)) + return nn.Sequential(*modules) + + if projector_type == 'identity': + return IdentityMap() + + raise ValueError(f'Unknown projector type: {projector_type}') diff --git a/Geo/GeochatP-main/geochat/model/utils.py b/Geo/GeochatP-main/geochat/model/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..2563f89c6cedf5e73508afec8f9979105df9b745 --- /dev/null +++ b/Geo/GeochatP-main/geochat/model/utils.py @@ -0,0 +1,20 @@ +from transformers import AutoConfig + + +def auto_upgrade(config): + cfg = AutoConfig.from_pretrained(config) + if 'llava' in config and 'llava' not in cfg.model_type: + assert cfg.model_type == 'llama' + print("You are using newer LLaVA code base, while the checkpoint of v0 is from older code base.") + print("You must upgrade the checkpoint to the new code base (this can be done automatically).") + confirm = input("Please confirm that you want to upgrade the checkpoint. [Y/N]") + if confirm.lower() in ["y", "yes"]: + print("Upgrading checkpoint...") + assert len(cfg.architectures) == 1 + setattr(cfg.__class__, "model_type", "llava") + cfg.architectures[0] = 'LlavaLlamaForCausalLM' + cfg.save_pretrained(config) + print("Checkpoint upgraded.") + else: + print("Checkpoint upgrade aborted.") + exit(1) diff --git a/Geo/GeochatP-main/geochat/serve/__init__.py b/Geo/GeochatP-main/geochat/serve/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/Geo/GeochatP-main/geochat/serve/cli.py b/Geo/GeochatP-main/geochat/serve/cli.py new file mode 100644 index 0000000000000000000000000000000000000000..901698c05d61a3d9ce466cfd0852ed5a318ef633 --- /dev/null +++ b/Geo/GeochatP-main/geochat/serve/cli.py @@ -0,0 +1,216 @@ +import argparse +import torch + +from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from llava.conversation import conv_templates, SeparatorStyle +from llava.model.builder import load_pretrained_model +from llava.utils import disable_torch_init +from llava.mm_utils import process_images, tokenizer_image_token, get_model_name_from_path, KeywordsStoppingCriteria +import matplotlib.pyplot as plt +from matplotlib.patches import Polygon, Circle, Rectangle +from matplotlib.collections import PatchCollection +from PIL import Image +import numpy as np +import requests +from PIL import Image +from io import BytesIO +from transformers import TextStreamer +import math +import cv2 +def scale_bounding_box(box, scale_factor=1.2): + # Extracting coordinates + top_left_x, top_left_y, bottom_right_x, bottom_right_y = box + + # Calculating new width and height + width = bottom_right_x - top_left_x + height = bottom_right_y - top_left_y + + # Scaling width and height + new_width = int(width * scale_factor) + new_height = int(height * scale_factor) + + # Calculating new coordinates + new_top_left_x = top_left_x - int((new_width - width) / 2) + new_top_left_y = top_left_y - int((new_height - height) / 2) + new_bottom_right_x = new_top_left_x + new_width + new_bottom_right_y = new_top_left_y + new_height + + # Returning the scaled bounding box + return [new_top_left_x, new_top_left_y, new_bottom_right_x, new_bottom_right_y] + + + +def load_image(image_file): + if image_file.startswith('http://') or image_file.startswith('https://'): + response = requests.get(image_file) + image = Image.open(BytesIO(response.content)).convert('RGB') + else: + image = Image.open(image_file).convert('RGB') + return image +def bbox_and_angle_to_polygon(x1, y1, x2, y2, a): + # Calculate center coordinates + x_ctr = (x1 + x2) / 2 + y_ctr = (y1 + y2) / 2 + + # Calculate width and height + w = abs(x2 - x1) + h = abs(y2 - y1) + + # Calculate the angle in radians + angle_rad = math.radians(a) + + # Calculate coordinates of the four corners of the rotated bounding box + cos_a = math.cos(angle_rad) + sin_a = math.sin(angle_rad) + + x1_rot = cos_a * (-w / 2) - sin_a * (-h / 2) + x_ctr + y1_rot = sin_a * (-w / 2) + cos_a * (-h / 2) + y_ctr + + x2_rot = cos_a * (w / 2) - sin_a * (-h / 2) + x_ctr + y2_rot = sin_a * (w / 2) + cos_a * (-h / 2) + y_ctr + + x3_rot = cos_a * (w / 2) - sin_a * (h / 2) + x_ctr + y3_rot = sin_a * (w / 2) + cos_a * (h / 2) + y_ctr + + x4_rot = cos_a * (-w / 2) - sin_a * (h / 2) + x_ctr + y4_rot = sin_a * (-w / 2) + cos_a * (h / 2) + y_ctr + + # Return the polygon coordinates + polygon_coords = np.array((x1_rot, y1_rot, x2_rot, y2_rot, x3_rot, y3_rot, x4_rot, y4_rot)) + + return polygon_coords + + +def main(args): + # Model + disable_torch_init() + + model_name = get_model_name_from_path(args.model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device) + + if 'llama-2' in model_name.lower(): + conv_mode = "llava_llama_2" + elif "v1" in model_name.lower(): + conv_mode = "llava_v1" + elif "mpt" in model_name.lower(): + conv_mode = "mpt" + else: + conv_mode = "llava_v0" + + if args.conv_mode is not None and conv_mode != args.conv_mode: + print('[WARNING] the auto inferred conversation mode is {}, while `--conv-mode` is {}, using {}'.format(conv_mode, args.conv_mode, args.conv_mode)) + else: + args.conv_mode = conv_mode + + conv = conv_templates[args.conv_mode].copy() + if "mpt" in model_name.lower(): + roles = ('user', 'assistant') + else: + roles = conv.roles + + image = load_image(args.image_file) + # Similar operation in model_worker.py + image_tensor = process_images([image], image_processor, args) + if type(image_tensor) is list: + image_tensor = [image.to(model.device, dtype=torch.float16) for image in image_tensor] + else: + image_tensor = image_tensor.to(model.device, dtype=torch.float16) + + while True: + try: + inp = input(f"{roles[0]}: ") + except EOFError: + inp = "" + if not inp: + print("exit...") + break + + print(f"{roles[1]}: ", end="") + + if image is not None: + # first message + if model.config.mm_use_im_start_end: + inp = DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN + '\n' + inp + else: + inp = DEFAULT_IMAGE_TOKEN + '\n' + inp + conv.append_message(conv.roles[0], inp) + image = None + else: + # later messages + conv.append_message(conv.roles[0], inp) + conv.append_message(conv.roles[1], None) + prompt = conv.get_prompt() + + input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).cuda() + stop_str = conv.sep if conv.sep_style != SeparatorStyle.TWO else conv.sep2 + keywords = [stop_str] + stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) + streamer = TextStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) + import pdb;pdb.set_trace() + with torch.inference_mode(): + output_ids = model.generate( + input_ids, + images=image_tensor, + do_sample=False, + temperature=args.temperature, + max_new_tokens=args.max_new_tokens, + streamer=streamer, + use_cache=True, + stopping_criteria=[stopping_criteria]) + + outputs = tokenizer.decode(output_ids[0, input_ids.shape[1]:]).strip() + conv.messages[-1][-1] = outputs + # bboxes=[] + # print(inp) + # # if ('[refer]') or ("[grounding]") in inp: + # output=outputs.replace('','') + # print(output) + # # import pdb;pdb.set_trace() + # bboxes = np.array([int(x) for y in output.replace("|", "").split("}") for x in y.replace("><", ",").replace(">", "").replace("<", "").replace("}", "").replace("{", "").split(',') if x !=""]).astype(np.float32) + # remainder = len(bboxes)%5 + # if remainder >0: + # bboxes = bboxes[:-remainder] + # # bboxes[1]=100-bboxes[1] + # # bboxes=bboxes + # # scaled_bbox=scale_bounding_box(bboxes[:-1], scale_factor=1.3) + # # bboxes=scaled_bbox.append(bboxes[-1]) + # # bboxes = bboxes.reshape(-1, 5) + # bboxes=bboxes.tolist() + # bboxes=[int(bbox*5.04) for bbox in bboxes] + # bboxes = np.array([bbox_and_angle_to_polygon(bboxes[0],bboxes[1],bboxes[2],bboxes[3],bboxes[4])]) + # # print(bboxes) + # bboxes=bboxes.reshape(4,2) + + # image = cv2.imread(args.image_file) + # # print(image.shape) + # image=cv2.resize(image,(504,504)) + # plt.imshow(image) + # # import pdb;pdb.set_trace() + # polygons=[Polygon(bboxes)] + # plt.axis('off') + # ax = plt.gca() + # ax.set_autoscale_on(False) + # p = PatchCollection(polygons, facecolors='none', edgecolors=[(0,255,0)], linewidths=2) + # ax.add_collection(p) + # # print('hello') + # plt.savefig('/share/data/drive_3/kartik/LLaVA/output_images/output.jpg') + + if args.debug: + print("\n", {"prompt": prompt, "outputs": outputs}, "\n") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--image-file", type=str, required=True) + parser.add_argument("--device", type=str, default="cuda") + parser.add_argument("--conv-mode", type=str, default=None) + parser.add_argument("--temperature", type=float, default=0.2) + parser.add_argument("--max-new-tokens", type=int, default=512) + parser.add_argument("--load-8bit", action="store_true") + parser.add_argument("--load-4bit", action="store_true") + parser.add_argument("--debug", action="store_true") + parser.add_argument("--image-aspect-ratio", type=str, default='pad') + args = parser.parse_args() + main(args) diff --git a/Geo/GeochatP-main/geochat/serve/controller.py b/Geo/GeochatP-main/geochat/serve/controller.py new file mode 100644 index 0000000000000000000000000000000000000000..b61fca6ea9fe8aa37acd143784a3d76e90a58b9f --- /dev/null +++ b/Geo/GeochatP-main/geochat/serve/controller.py @@ -0,0 +1,298 @@ +""" +A controller manages distributed workers. +It sends worker addresses to clients. +""" +import argparse +import asyncio +import dataclasses +from enum import Enum, auto +import json +import logging +import time +from typing import List, Union +import threading + +from fastapi import FastAPI, Request +from fastapi.responses import StreamingResponse +import numpy as np +import requests +import uvicorn + +from llava.constants import CONTROLLER_HEART_BEAT_EXPIRATION +from llava.utils import build_logger, server_error_msg + + +logger = build_logger("controller", "controller.log") + + +class DispatchMethod(Enum): + LOTTERY = auto() + SHORTEST_QUEUE = auto() + + @classmethod + def from_str(cls, name): + if name == "lottery": + return cls.LOTTERY + elif name == "shortest_queue": + return cls.SHORTEST_QUEUE + else: + raise ValueError(f"Invalid dispatch method") + + +@dataclasses.dataclass +class WorkerInfo: + model_names: List[str] + speed: int + queue_length: int + check_heart_beat: bool + last_heart_beat: str + + +def heart_beat_controller(controller): + while True: + time.sleep(CONTROLLER_HEART_BEAT_EXPIRATION) + controller.remove_stable_workers_by_expiration() + + +class Controller: + def __init__(self, dispatch_method: str): + # Dict[str -> WorkerInfo] + self.worker_info = {} + self.dispatch_method = DispatchMethod.from_str(dispatch_method) + + self.heart_beat_thread = threading.Thread( + target=heart_beat_controller, args=(self,)) + self.heart_beat_thread.start() + + logger.info("Init controller") + + def register_worker(self, worker_name: str, check_heart_beat: bool, + worker_status: dict): + if worker_name not in self.worker_info: + logger.info(f"Register a new worker: {worker_name}") + else: + logger.info(f"Register an existing worker: {worker_name}") + + if not worker_status: + worker_status = self.get_worker_status(worker_name) + if not worker_status: + return False + + self.worker_info[worker_name] = WorkerInfo( + worker_status["model_names"], worker_status["speed"], worker_status["queue_length"], + check_heart_beat, time.time()) + + logger.info(f"Register done: {worker_name}, {worker_status}") + return True + + def get_worker_status(self, worker_name: str): + try: + r = requests.post(worker_name + "/worker_get_status", timeout=5) + except requests.exceptions.RequestException as e: + logger.error(f"Get status fails: {worker_name}, {e}") + return None + + if r.status_code != 200: + logger.error(f"Get status fails: {worker_name}, {r}") + return None + + return r.json() + + def remove_worker(self, worker_name: str): + del self.worker_info[worker_name] + + def refresh_all_workers(self): + old_info = dict(self.worker_info) + self.worker_info = {} + + for w_name, w_info in old_info.items(): + if not self.register_worker(w_name, w_info.check_heart_beat, None): + logger.info(f"Remove stale worker: {w_name}") + + def list_models(self): + model_names = set() + + for w_name, w_info in self.worker_info.items(): + model_names.update(w_info.model_names) + + return list(model_names) + + def get_worker_address(self, model_name: str): + if self.dispatch_method == DispatchMethod.LOTTERY: + worker_names = [] + worker_speeds = [] + for w_name, w_info in self.worker_info.items(): + if model_name in w_info.model_names: + worker_names.append(w_name) + worker_speeds.append(w_info.speed) + worker_speeds = np.array(worker_speeds, dtype=np.float32) + norm = np.sum(worker_speeds) + if norm < 1e-4: + return "" + worker_speeds = worker_speeds / norm + if True: # Directly return address + pt = np.random.choice(np.arange(len(worker_names)), + p=worker_speeds) + worker_name = worker_names[pt] + return worker_name + + # Check status before returning + while True: + pt = np.random.choice(np.arange(len(worker_names)), + p=worker_speeds) + worker_name = worker_names[pt] + + if self.get_worker_status(worker_name): + break + else: + self.remove_worker(worker_name) + worker_speeds[pt] = 0 + norm = np.sum(worker_speeds) + if norm < 1e-4: + return "" + worker_speeds = worker_speeds / norm + continue + return worker_name + elif self.dispatch_method == DispatchMethod.SHORTEST_QUEUE: + worker_names = [] + worker_qlen = [] + for w_name, w_info in self.worker_info.items(): + if model_name in w_info.model_names: + worker_names.append(w_name) + worker_qlen.append(w_info.queue_length / w_info.speed) + if len(worker_names) == 0: + return "" + min_index = np.argmin(worker_qlen) + w_name = worker_names[min_index] + self.worker_info[w_name].queue_length += 1 + logger.info(f"names: {worker_names}, queue_lens: {worker_qlen}, ret: {w_name}") + return w_name + else: + raise ValueError(f"Invalid dispatch method: {self.dispatch_method}") + + def receive_heart_beat(self, worker_name: str, queue_length: int): + if worker_name not in self.worker_info: + logger.info(f"Receive unknown heart beat. {worker_name}") + return False + + self.worker_info[worker_name].queue_length = queue_length + self.worker_info[worker_name].last_heart_beat = time.time() + logger.info(f"Receive heart beat. {worker_name}") + return True + + def remove_stable_workers_by_expiration(self): + expire = time.time() - CONTROLLER_HEART_BEAT_EXPIRATION + to_delete = [] + for worker_name, w_info in self.worker_info.items(): + if w_info.check_heart_beat and w_info.last_heart_beat < expire: + to_delete.append(worker_name) + + for worker_name in to_delete: + self.remove_worker(worker_name) + + def worker_api_generate_stream(self, params): + worker_addr = self.get_worker_address(params["model"]) + if not worker_addr: + logger.info(f"no worker: {params['model']}") + ret = { + "text": server_error_msg, + "error_code": 2, + } + yield json.dumps(ret).encode() + b"\0" + + try: + response = requests.post(worker_addr + "/worker_generate_stream", + json=params, stream=True, timeout=5) + for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): + if chunk: + yield chunk + b"\0" + except requests.exceptions.RequestException as e: + logger.info(f"worker timeout: {worker_addr}") + ret = { + "text": server_error_msg, + "error_code": 3, + } + yield json.dumps(ret).encode() + b"\0" + + + # Let the controller act as a worker to achieve hierarchical + # management. This can be used to connect isolated sub networks. + def worker_api_get_status(self): + model_names = set() + speed = 0 + queue_length = 0 + + for w_name in self.worker_info: + worker_status = self.get_worker_status(w_name) + if worker_status is not None: + model_names.update(worker_status["model_names"]) + speed += worker_status["speed"] + queue_length += worker_status["queue_length"] + + return { + "model_names": list(model_names), + "speed": speed, + "queue_length": queue_length, + } + + +app = FastAPI() + + +@app.post("/register_worker") +async def register_worker(request: Request): + data = await request.json() + controller.register_worker( + data["worker_name"], data["check_heart_beat"], + data.get("worker_status", None)) + + +@app.post("/refresh_all_workers") +async def refresh_all_workers(): + models = controller.refresh_all_workers() + + +@app.post("/list_models") +async def list_models(): + models = controller.list_models() + return {"models": models} + + +@app.post("/get_worker_address") +async def get_worker_address(request: Request): + data = await request.json() + addr = controller.get_worker_address(data["model"]) + return {"address": addr} + + +@app.post("/receive_heart_beat") +async def receive_heart_beat(request: Request): + data = await request.json() + exist = controller.receive_heart_beat( + data["worker_name"], data["queue_length"]) + return {"exist": exist} + + +@app.post("/worker_generate_stream") +async def worker_api_generate_stream(request: Request): + params = await request.json() + generator = controller.worker_api_generate_stream(params) + return StreamingResponse(generator) + + +@app.post("/worker_get_status") +async def worker_api_get_status(request: Request): + return controller.worker_api_get_status() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--host", type=str, default="localhost") + parser.add_argument("--port", type=int, default=21001) + parser.add_argument("--dispatch-method", type=str, choices=[ + "lottery", "shortest_queue"], default="shortest_queue") + args = parser.parse_args() + logger.info(f"args: {args}") + + controller = Controller(args.dispatch_method) + uvicorn.run(app, host=args.host, port=args.port, log_level="info") diff --git a/Geo/GeochatP-main/geochat/serve/examples/11760.jpg b/Geo/GeochatP-main/geochat/serve/examples/11760.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f5a270f4318cb6e91b8a85ff20f984269de87230 --- /dev/null +++ b/Geo/GeochatP-main/geochat/serve/examples/11760.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:890a133b3c1a9eb16d9782a749a952035347c916b10182cdaf43aa888ce75f31 +size 601834 diff --git a/Geo/GeochatP-main/geochat/serve/examples/11765.jpg b/Geo/GeochatP-main/geochat/serve/examples/11765.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f14ef66fba5512b362570cfb16f6adf324fd411b --- /dev/null +++ b/Geo/GeochatP-main/geochat/serve/examples/11765.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:83fea6f37706307107e8d7833d7f9e89dd116646423cea8d3918c88c3c2f0e1c +size 230674 diff --git a/Geo/GeochatP-main/geochat/serve/examples/extreme_ironing.jpg b/Geo/GeochatP-main/geochat/serve/examples/extreme_ironing.jpg new file mode 100644 index 0000000000000000000000000000000000000000..638b078837f175039b2db49a63821288d9681daa Binary files /dev/null and b/Geo/GeochatP-main/geochat/serve/examples/extreme_ironing.jpg differ diff --git a/Geo/GeochatP-main/geochat/serve/examples/waterview.jpg b/Geo/GeochatP-main/geochat/serve/examples/waterview.jpg new file mode 100644 index 0000000000000000000000000000000000000000..6f44ebaba1aa493b8bab3baa4e827b76752b1869 Binary files /dev/null and b/Geo/GeochatP-main/geochat/serve/examples/waterview.jpg differ diff --git a/Geo/GeochatP-main/geochat/serve/gradio_trial.py b/Geo/GeochatP-main/geochat/serve/gradio_trial.py new file mode 100644 index 0000000000000000000000000000000000000000..d43496aa2d83b5f3eaf4be1e3b8e160ce9ac40e5 --- /dev/null +++ b/Geo/GeochatP-main/geochat/serve/gradio_trial.py @@ -0,0 +1,7 @@ +import gradio as gr + +def greet(name): + return "Hello " + name + "!" + +demo = gr.Interface(fn=greet, inputs="text", outputs="text") +demo.launch(share=True) \ No newline at end of file diff --git a/Geo/GeochatP-main/geochat/serve/gradio_web_server.py b/Geo/GeochatP-main/geochat/serve/gradio_web_server.py new file mode 100644 index 0000000000000000000000000000000000000000..8fc4677674130249e6b5178ecf55876bb1a9e2d1 --- /dev/null +++ b/Geo/GeochatP-main/geochat/serve/gradio_web_server.py @@ -0,0 +1,420 @@ +import argparse +import datetime +import json +import os +import time + +import gradio as gr +import requests + +from llava.conversation import (default_conversation, conv_templates, + SeparatorStyle) +from llava.constants import LOGDIR +from llava.utils import (build_logger, server_error_msg, + violates_moderation, moderation_msg) +import hashlib + + +logger = build_logger("gradio_web_server", "gradio_web_server.log") + +headers = {"User-Agent": "LLaVA Client"} + +no_change_btn = gr.Button.update() +enable_btn = gr.Button.update(interactive=True) +disable_btn = gr.Button.update(interactive=False) + +priority = { + "vicuna-13b": "aaaaaaa", + "koala-13b": "aaaaaab", +} + + +def get_conv_log_filename(): + t = datetime.datetime.now() + name = os.path.join(LOGDIR, f"{t.year}-{t.month:02d}-{t.day:02d}-conv.json") + return name + + +def get_model_list(): + ret = requests.post(args.controller_url + "/refresh_all_workers") + assert ret.status_code == 200 + ret = requests.post(args.controller_url + "/list_models") + models = ret.json()["models"] + models.sort(key=lambda x: priority.get(x, x)) + logger.info(f"Models: {models}") + return models + + +get_window_url_params = """ +function() { + const params = new URLSearchParams(window.location.search); + url_params = Object.fromEntries(params); + console.log(url_params); + return url_params; + } +""" + + +def load_demo(url_params, request: gr.Request): + logger.info(f"load_demo. ip: {request.client.host}. params: {url_params}") + + dropdown_update = gr.Dropdown.update(visible=True) + if "model" in url_params: + model = url_params["model"] + if model in models: + dropdown_update = gr.Dropdown.update( + value=model, visible=True) + + state = default_conversation.copy() + return state, dropdown_update + + +def load_demo_refresh_model_list(request: gr.Request): + logger.info(f"load_demo. ip: {request.client.host}") + models = get_model_list() + state = default_conversation.copy() + dropdown_update = gr.Dropdown.update( + choices=models, + value=models[0] if len(models) > 0 else "" + ) + return state, dropdown_update + + +def vote_last_response(state, vote_type, model_selector, request: gr.Request): + with open(get_conv_log_filename(), "a") as fout: + data = { + "tstamp": round(time.time(), 4), + "type": vote_type, + "model": model_selector, + "state": state.dict(), + "ip": request.client.host, + } + fout.write(json.dumps(data) + "\n") + + +def upvote_last_response(state, model_selector, request: gr.Request): + logger.info(f"upvote. ip: {request.client.host}") + vote_last_response(state, "upvote", model_selector, request) + return ("",) + (disable_btn,) * 3 + + +def downvote_last_response(state, model_selector, request: gr.Request): + logger.info(f"downvote. ip: {request.client.host}") + vote_last_response(state, "downvote", model_selector, request) + return ("",) + (disable_btn,) * 3 + + +def flag_last_response(state, model_selector, request: gr.Request): + logger.info(f"flag. ip: {request.client.host}") + vote_last_response(state, "flag", model_selector, request) + return ("",) + (disable_btn,) * 3 + + +def regenerate(state, image_process_mode, request: gr.Request): + logger.info(f"regenerate. ip: {request.client.host}") + state.messages[-1][-1] = None + prev_human_msg = state.messages[-2] + if type(prev_human_msg[1]) in (tuple, list): + prev_human_msg[1] = (*prev_human_msg[1][:2], image_process_mode) + state.skip_next = False + return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 + + +def clear_history(request: gr.Request): + logger.info(f"clear_history. ip: {request.client.host}") + state = default_conversation.copy() + return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 + + +def add_text(state, text, image, image_process_mode, request: gr.Request): + logger.info(f"add_text. ip: {request.client.host}. len: {len(text)}") + if len(text) <= 0 and image is None: + state.skip_next = True + return (state, state.to_gradio_chatbot(), "", None) + (no_change_btn,) * 5 + if args.moderate: + flagged = violates_moderation(text) + if flagged: + state.skip_next = True + return (state, state.to_gradio_chatbot(), moderation_msg, None) + ( + no_change_btn,) * 5 + + text = text[:1536] # Hard cut-off + if image is not None: + text = text[:1200] # Hard cut-off for images + if '' not in text: + # text = '' + text + text = text + '\n' + text = (text, image, image_process_mode) + if len(state.get_images(return_pil=True)) > 0: + state = default_conversation.copy() + state.append_message(state.roles[0], text) + state.append_message(state.roles[1], None) + state.skip_next = False + return (state, state.to_gradio_chatbot(), "", None) + (disable_btn,) * 5 + + +def http_bot(state, model_selector, temperature, top_p, max_new_tokens, request: gr.Request): + logger.info(f"http_bot. ip: {request.client.host}") + start_tstamp = time.time() + model_name = model_selector + + if state.skip_next: + # This generate call is skipped due to invalid inputs + yield (state, state.to_gradio_chatbot()) + (no_change_btn,) * 5 + return + + if len(state.messages) == state.offset + 2: + # First round of conversation + if "llava" in model_name.lower(): + if 'llama-2' in model_name.lower(): + template_name = "llava_llama_2" + elif "v1" in model_name.lower(): + if 'mmtag' in model_name.lower(): + template_name = "v1_mmtag" + elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): + template_name = "v1_mmtag" + else: + template_name = "llava_v1" + elif "mpt" in model_name.lower(): + template_name = "mpt" + else: + if 'mmtag' in model_name.lower(): + template_name = "v0_mmtag" + elif 'plain' in model_name.lower() and 'finetune' not in model_name.lower(): + template_name = "v0_mmtag" + else: + template_name = "llava_v0" + elif "mpt" in model_name: + template_name = "mpt_text" + elif "llama-2" in model_name: + template_name = "llama_2" + else: + template_name = "vicuna_v1" + new_state = conv_templates[template_name].copy() + new_state.append_message(new_state.roles[0], state.messages[-2][1]) + new_state.append_message(new_state.roles[1], None) + state = new_state + + # Query worker address + controller_url = args.controller_url + ret = requests.post(controller_url + "/get_worker_address", + json={"model": model_name}) + worker_addr = ret.json()["address"] + logger.info(f"model_name: {model_name}, worker_addr: {worker_addr}") + + # No available worker + if worker_addr == "": + state.messages[-1][-1] = server_error_msg + yield (state, state.to_gradio_chatbot(), disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) + return + + # Construct prompt + prompt = state.get_prompt() + + all_images = state.get_images(return_pil=True) + all_image_hash = [hashlib.md5(image.tobytes()).hexdigest() for image in all_images] + for image, hash in zip(all_images, all_image_hash): + t = datetime.datetime.now() + filename = os.path.join(LOGDIR, "serve_images", f"{t.year}-{t.month:02d}-{t.day:02d}", f"{hash}.jpg") + if not os.path.isfile(filename): + os.makedirs(os.path.dirname(filename), exist_ok=True) + image.save(filename) + + # Make requests + pload = { + "model": model_name, + "prompt": prompt, + "temperature": float(temperature), + "top_p": float(top_p), + "max_new_tokens": min(int(max_new_tokens), 1536), + "stop": state.sep if state.sep_style in [SeparatorStyle.SINGLE, SeparatorStyle.MPT] else state.sep2, + "images": f'List of {len(state.get_images())} images: {all_image_hash}', + } + logger.info(f"==== request ====\n{pload}") + + pload['images'] = state.get_images() + + state.messages[-1][-1] = "▌" + yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 + + try: + # Stream output + response = requests.post(worker_addr + "/worker_generate_stream", + headers=headers, json=pload, stream=True, timeout=10) + for chunk in response.iter_lines(decode_unicode=False, delimiter=b"\0"): + if chunk: + data = json.loads(chunk.decode()) + if data["error_code"] == 0: + output = data["text"][len(prompt):].strip() + state.messages[-1][-1] = output + "▌" + yield (state, state.to_gradio_chatbot()) + (disable_btn,) * 5 + else: + output = data["text"] + f" (error_code: {data['error_code']})" + state.messages[-1][-1] = output + yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) + return + time.sleep(0.03) + except requests.exceptions.RequestException as e: + state.messages[-1][-1] = server_error_msg + yield (state, state.to_gradio_chatbot()) + (disable_btn, disable_btn, disable_btn, enable_btn, enable_btn) + return + + state.messages[-1][-1] = state.messages[-1][-1][:-1] + yield (state, state.to_gradio_chatbot()) + (enable_btn,) * 5 + + finish_tstamp = time.time() + logger.info(f"{output}") + + with open(get_conv_log_filename(), "a") as fout: + data = { + "tstamp": round(finish_tstamp, 4), + "type": "chat", + "model": model_name, + "start": round(start_tstamp, 4), + "finish": round(start_tstamp, 4), + "state": state.dict(), + "images": all_image_hash, + "ip": request.client.host, + } + fout.write(json.dumps(data) + "\n") + +title_markdown = (""" +# 🛰️ RemoteChat: Advanced Remote Sensing and Spatial Intelligence Model +[[Project Page]()] [[Code]()] [[Model]()] | 📚 [[]()] [[GeoChat-v1]()] +""") + +tos_markdown = (""" +### Terms of use +By using this service, users are required to agree to the following terms: +The service is a research preview intended for non-commercial use only. It only provides limited safety measures and may generate offensive content. It must not be used for any illegal, harmful, violent, racist, or sexual purposes. The service may collect user dialogue data for future research. +Please click the "Flag" button if you get any inappropriate answer! We will collect those to keep improving our moderator. +For an optimal experience, please use desktop computers for this demo, as mobile devices may compromise its quality. +""") + + +learn_more_markdown = (""" +### License +The service is a research preview intended for non-commercial use only, subject to the model [License](https://github.com/facebookresearch/llama/blob/main/MODEL_CARD.md) of LLaMA, [Terms of Use](https://openai.com/policies/terms-of-use) of the data generated by OpenAI, and [Privacy Practices](https://chrome.google.com/webstore/detail/sharegpt-share-your-chatg/daiacboceoaocpibfodeljbdfacokfjb) of ShareGPT. Please contact us if you find any potential violation. +""") + +block_css = """ + +#buttons button { + min-width: min(120px,100%); +} + +""" + +def build_demo(embed_mode): + textbox = gr.Textbox(show_label=False, placeholder="Enter text and press ENTER", container=False) + with gr.Blocks(title="RemoteChat", theme=gr.themes.Default(), css=block_css) as demo: + state = gr.State() + + if not embed_mode: + gr.Markdown(title_markdown) + + with gr.Row(): + with gr.Column(scale=3): + with gr.Row(elem_id="model_selector_row"): + model_selector = gr.Dropdown( + choices=models, + value=models[0] if len(models) > 0 else "", + interactive=True, + show_label=False, + container=False) + + imagebox = gr.Image(type="pil") + image_process_mode = gr.Radio( + ["Crop", "Resize", "Pad", "Default"], + value="Default", + label="Preprocess for non-square image", visible=False) + + cur_dir = os.path.dirname(os.path.abspath(__file__)) + gr.Examples(examples=[ + [f"{cur_dir}/examples/11765.jpg", "What are the types of airplanes present?"], + [f"{cur_dir}/examples/11760.jpg", "What are your thoughts on urban planning in this region?"], + ], inputs=[imagebox, textbox]) + + with gr.Accordion("Parameters", open=False) as parameter_row: + temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.2, step=0.1, interactive=True, label="Temperature",) + top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, step=0.1, interactive=True, label="Top P",) + max_output_tokens = gr.Slider(minimum=0, maximum=1024, value=512, step=64, interactive=True, label="Max output tokens",) + + with gr.Column(scale=8): + chatbot = gr.Chatbot(elem_id="chatbot", label="RemoteChat Bot", height=550) + with gr.Row(): + with gr.Column(scale=8): + textbox.render() + with gr.Column(scale=1, min_width=50): + submit_btn = gr.Button(value="Send", variant="primary") + with gr.Row(elem_id="buttons") as button_row: + upvote_btn = gr.Button(value="👍 Upvote", interactive=False) + downvote_btn = gr.Button(value="👎 Downvote", interactive=False) + flag_btn = gr.Button(value="⚠️ Flag", interactive=False) + #stop_btn = gr.Button(value="⏹️ Stop Generation", interactive=False) + regenerate_btn = gr.Button(value="🔄 Regenerate", interactive=False) + clear_btn = gr.Button(value="🗑️ Clear", interactive=False) + + if not embed_mode: + gr.Markdown(tos_markdown) + gr.Markdown(learn_more_markdown) + url_params = gr.JSON(visible=False) + + # Register listeners + btn_list = [upvote_btn, downvote_btn, flag_btn, regenerate_btn, clear_btn] + upvote_btn.click(upvote_last_response, + [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) + downvote_btn.click(downvote_last_response, + [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) + flag_btn.click(flag_last_response, + [state, model_selector], [textbox, upvote_btn, downvote_btn, flag_btn]) + regenerate_btn.click(regenerate, [state, image_process_mode], + [state, chatbot, textbox, imagebox] + btn_list).then( + http_bot, [state, model_selector, temperature, top_p, max_output_tokens], + [state, chatbot] + btn_list) + clear_btn.click(clear_history, None, [state, chatbot, textbox, imagebox] + btn_list) + + textbox.submit(add_text, [state, textbox, imagebox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list + ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens], + [state, chatbot] + btn_list) + submit_btn.click(add_text, [state, textbox, imagebox, image_process_mode], [state, chatbot, textbox, imagebox] + btn_list + ).then(http_bot, [state, model_selector, temperature, top_p, max_output_tokens], + [state, chatbot] + btn_list) + + if args.model_list_mode == "once": + demo.load(load_demo, [url_params], [state, model_selector], + _js=get_window_url_params) + elif args.model_list_mode == "reload": + demo.load(load_demo_refresh_model_list, None, [state, model_selector]) + else: + raise ValueError(f"Unknown model list mode: {args.model_list_mode}") + + return demo + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--host", type=str, default="0.0.0.0") + parser.add_argument("--port", type=int) + parser.add_argument("--controller-url", type=str, default="http://localhost:21001") + parser.add_argument("--concurrency-count", type=int, default=10) + parser.add_argument("--model-list-mode", type=str, default="once", + choices=["once", "reload"]) + parser.add_argument("--share", action="store_true") + parser.add_argument("--moderate", action="store_true") + parser.add_argument("--embed", action="store_true") + args = parser.parse_args() + logger.info(f"args: {args}") + + models = get_model_list() + + logger.info(args) + demo = build_demo(args.embed) + demo.queue( + concurrency_count=args.concurrency_count, + api_open=False + ).launch( + server_name=args.host, + server_port=args.port, + share=True + ) diff --git a/Geo/GeochatP-main/geochat/serve/model_worker.py b/Geo/GeochatP-main/geochat/serve/model_worker.py new file mode 100644 index 0000000000000000000000000000000000000000..a7bcd0829d0120c4359400b958fc3ad6c6867f9c --- /dev/null +++ b/Geo/GeochatP-main/geochat/serve/model_worker.py @@ -0,0 +1,285 @@ +""" +A model worker executes the model. +""" +import argparse +import asyncio +import json +import time +import threading +import uuid + +from fastapi import FastAPI, Request, BackgroundTasks +from fastapi.responses import StreamingResponse +import requests +import torch +import uvicorn +from functools import partial + +from llava.constants import WORKER_HEART_BEAT_INTERVAL +from llava.utils import (build_logger, server_error_msg, + pretty_print_semaphore) +from llava.model.builder import load_pretrained_model +from llava.mm_utils import process_images, load_image_from_base64, tokenizer_image_token, KeywordsStoppingCriteria +from llava.constants import IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from transformers import TextIteratorStreamer +from threading import Thread + + +GB = 1 << 30 + +worker_id = str(uuid.uuid4())[:6] +logger = build_logger("model_worker", f"model_worker_{worker_id}.log") +global_counter = 0 + +model_semaphore = None + + +def heart_beat_worker(controller): + + while True: + time.sleep(WORKER_HEART_BEAT_INTERVAL) + controller.send_heart_beat() + + +class ModelWorker: + def __init__(self, controller_addr, worker_addr, + worker_id, no_register, + model_path, model_base, model_name, + load_8bit, load_4bit, device): + self.controller_addr = controller_addr + self.worker_addr = worker_addr + self.worker_id = worker_id + if model_path.endswith("/"): + model_path = model_path[:-1] + if model_name is None: + model_paths = model_path.split("/") + if model_paths[-1].startswith('checkpoint-'): + self.model_name = model_paths[-2] + "_" + model_paths[-1] + else: + self.model_name = model_paths[-1] + else: + self.model_name = model_name + + self.device = device + logger.info(f"Loading the model {self.model_name} on worker {worker_id} ...") + self.tokenizer, self.model, self.image_processor, self.context_len = load_pretrained_model( + model_path, model_base, self.model_name, load_8bit, load_4bit, device=self.device) + self.is_multimodal = 'llava' in self.model_name.lower() + + if not no_register: + self.register_to_controller() + self.heart_beat_thread = threading.Thread( + target=heart_beat_worker, args=(self,)) + self.heart_beat_thread.start() + + def register_to_controller(self): + logger.info("Register to controller") + + url = self.controller_addr + "/register_worker" + data = { + "worker_name": self.worker_addr, + "check_heart_beat": True, + "worker_status": self.get_status() + } + r = requests.post(url, json=data) + assert r.status_code == 200 + + def send_heart_beat(self): + logger.info(f"Send heart beat. Models: {[self.model_name]}. " + f"Semaphore: {pretty_print_semaphore(model_semaphore)}. " + f"global_counter: {global_counter}") + + url = self.controller_addr + "/receive_heart_beat" + + while True: + try: + ret = requests.post(url, json={ + "worker_name": self.worker_addr, + "queue_length": self.get_queue_length()}, timeout=5) + exist = ret.json()["exist"] + break + except requests.exceptions.RequestException as e: + logger.error(f"heart beat error: {e}") + time.sleep(5) + + if not exist: + self.register_to_controller() + + def get_queue_length(self): + if model_semaphore is None: + return 0 + else: + return args.limit_model_concurrency - model_semaphore._value + (len( + model_semaphore._waiters) if model_semaphore._waiters is not None else 0) + + def get_status(self): + return { + "model_names": [self.model_name], + "speed": 1, + "queue_length": self.get_queue_length(), + } + + @torch.inference_mode() + def generate_stream(self, params): + tokenizer, model, image_processor = self.tokenizer, self.model, self.image_processor + + prompt = params["prompt"] + ori_prompt = prompt + images = params.get("images", None) + num_image_tokens = 0 + if images is not None and len(images) > 0 and self.is_multimodal: + if len(images) > 0: + if len(images) != prompt.count(DEFAULT_IMAGE_TOKEN): + raise ValueError("Number of images does not match number of tokens in prompt") + + images = [load_image_from_base64(image) for image in images] + images = process_images(images, image_processor, model.config) + + if type(images) is list: + images = [image.to(self.model.device, dtype=torch.float16) for image in images] + else: + images = images.to(self.model.device, dtype=torch.float16) + + replace_token = DEFAULT_IMAGE_TOKEN + if getattr(self.model.config, 'mm_use_im_start_end', False): + replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN + prompt = prompt.replace(DEFAULT_IMAGE_TOKEN, replace_token) + + num_image_tokens = prompt.count(replace_token) * model.get_vision_tower().num_patches + else: + images = None + image_args = {"images": images} + else: + images = None + image_args = {} + + temperature = float(params.get("temperature", 1.0)) + top_p = float(params.get("top_p", 1.0)) + max_context_length = getattr(model.config, 'max_position_embeddings', 2048) + max_new_tokens = min(int(params.get("max_new_tokens", 256)), 1024) + stop_str = params.get("stop", None) + do_sample = True if temperature > 0.001 else False + + input_ids = tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors='pt').unsqueeze(0).to(self.device) + keywords = [stop_str] + stopping_criteria = KeywordsStoppingCriteria(keywords, tokenizer, input_ids) + streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True, timeout=15) + + max_new_tokens = min(max_new_tokens, max_context_length - input_ids.shape[-1] - num_image_tokens) + + if max_new_tokens < 1: + yield json.dumps({"text": ori_prompt + "Exceeds max token length. Please start a new conversation, thanks.", "error_code": 0}).encode() + b"\0" + return + + thread = Thread(target=model.generate, kwargs=dict( + inputs=input_ids, + do_sample=do_sample, + temperature=temperature, + top_p=top_p, + max_new_tokens=max_new_tokens, + streamer=streamer, + stopping_criteria=[stopping_criteria], + use_cache=True, + **image_args + )) + thread.start() + + generated_text = ori_prompt + for new_text in streamer: + generated_text += new_text + if generated_text.endswith(stop_str): + generated_text = generated_text[:-len(stop_str)] + yield json.dumps({"text": generated_text, "error_code": 0}).encode() + b"\0" + + def generate_stream_gate(self, params): + try: + for x in self.generate_stream(params): + yield x + except ValueError as e: + print("Caught ValueError:", e) + ret = { + "text": server_error_msg, + "error_code": 1, + } + yield json.dumps(ret).encode() + b"\0" + except torch.cuda.CudaError as e: + print("Caught torch.cuda.CudaError:", e) + ret = { + "text": server_error_msg, + "error_code": 1, + } + yield json.dumps(ret).encode() + b"\0" + except Exception as e: + print("Caught Unknown Error", e) + ret = { + "text": server_error_msg, + "error_code": 1, + } + yield json.dumps(ret).encode() + b"\0" + + +app = FastAPI() + + +def release_model_semaphore(fn=None): + model_semaphore.release() + if fn is not None: + fn() + + +@app.post("/worker_generate_stream") +async def generate_stream(request: Request): + global model_semaphore, global_counter + global_counter += 1 + params = await request.json() + + if model_semaphore is None: + model_semaphore = asyncio.Semaphore(args.limit_model_concurrency) + await model_semaphore.acquire() + worker.send_heart_beat() + generator = worker.generate_stream_gate(params) + background_tasks = BackgroundTasks() + background_tasks.add_task(partial(release_model_semaphore, fn=worker.send_heart_beat)) + return StreamingResponse(generator, background=background_tasks) + + +@app.post("/worker_get_status") +async def get_status(request: Request): + return worker.get_status() + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--host", type=str, default="localhost") + parser.add_argument("--port", type=int, default=21002) + parser.add_argument("--worker-address", type=str, + default="http://localhost:21002") + parser.add_argument("--controller-address", type=str, + default="http://localhost:21001") + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--model-name", type=str) + parser.add_argument("--device", type=str, default="cuda") + parser.add_argument("--multi-modal", action="store_true", help="Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") + parser.add_argument("--limit-model-concurrency", type=int, default=5) + parser.add_argument("--stream-interval", type=int, default=1) + parser.add_argument("--no-register", action="store_true") + parser.add_argument("--load-8bit", action="store_true") + parser.add_argument("--load-4bit", action="store_true") + args = parser.parse_args() + logger.info(f"args: {args}") + + if args.multi_modal: + logger.warning("Multimodal mode is automatically detected with model name, please make sure `llava` is included in the model path.") + + worker = ModelWorker(args.controller_address, + args.worker_address, + worker_id, + args.no_register, + args.model_path, + args.model_base, + args.model_name, + args.load_8bit, + args.load_4bit, + args.device) + uvicorn.run(app, host=args.host, port=args.port, log_level="info") diff --git a/Geo/GeochatP-main/geochat/serve/register_worker.py b/Geo/GeochatP-main/geochat/serve/register_worker.py new file mode 100644 index 0000000000000000000000000000000000000000..2c2c40295e0351f25709ba25554c9329f15bf0d2 --- /dev/null +++ b/Geo/GeochatP-main/geochat/serve/register_worker.py @@ -0,0 +1,26 @@ +""" +Manually register workers. + +Usage: +python3 -m fastchat.serve.register_worker --controller http://localhost:21001 --worker-name http://localhost:21002 +""" + +import argparse + +import requests + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--controller-address", type=str) + parser.add_argument("--worker-name", type=str) + parser.add_argument("--check-heart-beat", action="store_true") + args = parser.parse_args() + + url = args.controller_address + "/register_worker" + data = { + "worker_name": args.worker_name, + "check_heart_beat": args.check_heart_beat, + "worker_status": None, + } + r = requests.post(url, json=data) + assert r.status_code == 200 diff --git a/Geo/GeochatP-main/geochat/serve/test_message.py b/Geo/GeochatP-main/geochat/serve/test_message.py new file mode 100644 index 0000000000000000000000000000000000000000..6b090faed0e630b03b2294545050f1f4f5032cad --- /dev/null +++ b/Geo/GeochatP-main/geochat/serve/test_message.py @@ -0,0 +1,62 @@ +import argparse +import json + +import requests + +from llava.conversation import default_conversation + + +def main(): + if args.worker_address: + worker_addr = args.worker_address + else: + controller_addr = args.controller_address + ret = requests.post(controller_addr + "/refresh_all_workers") + ret = requests.post(controller_addr + "/list_models") + models = ret.json()["models"] + models.sort() + print(f"Models: {models}") + + ret = requests.post(controller_addr + "/get_worker_address", + json={"model": args.model_name}) + worker_addr = ret.json()["address"] + print(f"worker_addr: {worker_addr}") + + if worker_addr == "": + return + + conv = default_conversation.copy() + conv.append_message(conv.roles[0], args.message) + prompt = conv.get_prompt() + + headers = {"User-Agent": "LLaVA Client"} + pload = { + "model": args.model_name, + "prompt": prompt, + "max_new_tokens": args.max_new_tokens, + "temperature": 0.7, + "stop": conv.sep, + } + response = requests.post(worker_addr + "/worker_generate_stream", headers=headers, + json=pload, stream=True) + + print(prompt.replace(conv.sep, "\n"), end="") + for chunk in response.iter_lines(chunk_size=8192, decode_unicode=False, delimiter=b"\0"): + if chunk: + data = json.loads(chunk.decode("utf-8")) + output = data["text"].split(conv.sep)[-1] + print(output, end="\r") + print("") + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--controller-address", type=str, default="http://localhost:21001") + parser.add_argument("--worker-address", type=str) + parser.add_argument("--model-name", type=str, default="facebook/opt-350m") + parser.add_argument("--max-new-tokens", type=int, default=32) + parser.add_argument("--message", type=str, default= + "Tell me a story with more than 1000 words.") + args = parser.parse_args() + + main() diff --git a/Geo/GeochatP-main/geochat/train/geochat_trainer.py b/Geo/GeochatP-main/geochat/train/geochat_trainer.py new file mode 100644 index 0000000000000000000000000000000000000000..93fe8043a40c133410b2ae8516fd25c3c1deca21 --- /dev/null +++ b/Geo/GeochatP-main/geochat/train/geochat_trainer.py @@ -0,0 +1,175 @@ +import os +import torch + +from torch.utils.data import Sampler + +from transformers import Trainer +from transformers.trainer import ( + has_length, +) +from typing import List, Optional + + +def maybe_zero_3(param, ignore_status=False, name=None): + from deepspeed import zero + from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus + if hasattr(param, "ds_id"): + if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: + if not ignore_status: + print(name, 'no ignore status') + with zero.GatheredParameters([param]): + param = param.data.detach().cpu().clone() + else: + param = param.detach().cpu().clone() + return param + + +def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): + to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} + to_return = {k: maybe_zero_3(v, ignore_status=True, name=k).cpu() for k, v in to_return.items()} + return to_return + + +def split_to_even_chunks(indices, lengths, num_chunks): + """ + Split a list of indices into `chunks` chunks of roughly equal lengths. + """ + + if len(indices) % num_chunks != 0: + return [indices[i::num_chunks] for i in range(num_chunks)] + + num_indices_per_chunk = len(indices) // num_chunks + + chunks = [[] for _ in range(num_chunks)] + chunks_lengths = [0 for _ in range(num_chunks)] + for index in indices: + shortest_chunk = chunks_lengths.index(min(chunks_lengths)) + chunks[shortest_chunk].append(index) + chunks_lengths[shortest_chunk] += lengths[index] + if len(chunks[shortest_chunk]) == num_indices_per_chunk: + chunks_lengths[shortest_chunk] = float("inf") + + return chunks + + +def get_modality_length_grouped_indices(lengths, batch_size, world_size, generator=None): + # We need to use torch for the random part as a distributed sampler will set the random seed for torch. + assert all(l != 0 for l in lengths), "Should not have zero length." + mm_indices, mm_lengths = zip(*[(i, l) for i, l in enumerate(lengths) if l > 0]) + lang_indices, lang_lengths = zip(*[(i, -l) for i, l in enumerate(lengths) if l < 0]) + + assert len(mm_indices) > 0, "Should have at least one multimodal sample." + assert len(lang_indices) > 0, "Should have at least one language sample." + + mm_shuffle = [mm_indices[i] for i in get_length_grouped_indices(mm_lengths, batch_size, world_size, generator=None)] + lang_shuffle = [lang_indices[i] for i in get_length_grouped_indices(lang_lengths, batch_size, world_size, generator=None)] + megabatch_size = world_size * batch_size + mm_megabatches = [mm_shuffle[i : i + megabatch_size] for i in range(0, len(mm_shuffle), megabatch_size)] + lang_megabatches = [lang_shuffle[i : i + megabatch_size] for i in range(0, len(lang_shuffle), megabatch_size)] + + last_mm = mm_megabatches[-1] + last_lang = lang_megabatches[-1] + additional_batch = last_mm + last_lang + megabatches = mm_megabatches[:-1] + lang_megabatches[:-1] + megabatch_indices = torch.randperm(len(megabatches), generator=generator) + megabatches = [megabatches[i] for i in megabatch_indices] + + if len(additional_batch) >= megabatch_size: + megabatches = [additional_batch[:megabatch_size]] + megabatches + additional_batch = additional_batch[megabatch_size:] + + if len(additional_batch) > 0: + megabatches.append(additional_batch) + + return [i for megabatch in megabatches for i in megabatch] + + +def get_length_grouped_indices(lengths, batch_size, world_size, generator=None, merge=True): + # We need to use torch for the random part as a distributed sampler will set the random seed for torch. + indices = torch.randperm(len(lengths), generator=generator) + megabatch_size = world_size * batch_size + megabatches = [indices[i : i + megabatch_size].tolist() for i in range(0, len(lengths), megabatch_size)] + megabatches = [sorted(megabatch, key=lambda i: lengths[i], reverse=True) for megabatch in megabatches] + megabatches = [split_to_even_chunks(megabatch, lengths, world_size) for megabatch in megabatches] + + return [i for megabatch in megabatches for batch in megabatch for i in batch] + + +class LengthGroupedSampler(Sampler): + r""" + Sampler that samples indices in a way that groups together features of the dataset of roughly the same length while + keeping a bit of randomness. + """ + + def __init__( + self, + batch_size: int, + world_size: int, + lengths: Optional[List[int]] = None, + generator=None, + group_by_modality: bool = False, + ): + if lengths is None: + raise ValueError("Lengths must be provided.") + + self.batch_size = batch_size + self.world_size = world_size + self.lengths = lengths + self.generator = generator + self.group_by_modality = group_by_modality + + def __len__(self): + return len(self.lengths) + + def __iter__(self): + if self.group_by_modality: + indices = get_modality_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator) + else: + indices = get_length_grouped_indices(self.lengths, self.batch_size, self.world_size, generator=self.generator) + return iter(indices) + + +class GeoChatTrainer(Trainer): + + def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]: + if self.train_dataset is None or not has_length(self.train_dataset): + return None + + if self.args.group_by_modality_length: + lengths = self.train_dataset.modality_lengths + return LengthGroupedSampler( + # self.args.train_batch_size * self.args.gradient_accumulation_steps, # TODO: seems that we should not have gradient_accumulation_steps + self.args.train_batch_size, + world_size=self.args.world_size, + lengths=lengths, + group_by_modality=True, + ) + else: + return super()._get_train_sampler() + + def _save_checkpoint(self, model, trial, metrics=None): + if getattr(self.args, 'tune_mm_mlp_adapter', False): + from transformers.trainer_utils import PREFIX_CHECKPOINT_DIR + checkpoint_folder = f"{PREFIX_CHECKPOINT_DIR}-{self.state.global_step}" + + run_dir = self._get_output_dir(trial=trial) + output_dir = os.path.join(run_dir, checkpoint_folder) + + # Only save Adapter + keys_to_match = ['mm_projector', 'vision_resampler'] + if getattr(self.args, "use_im_start_end", False): + keys_to_match.extend(['embed_tokens', 'embed_in']) + + weight_to_save = get_mm_adapter_state_maybe_zero_3(self.model.named_parameters(), keys_to_match) + + if self.args.local_rank == 0 or self.args.local_rank == -1: + self.model.config.save_pretrained(output_dir) + torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) + else: + super(GeoChatTrainer, self)._save_checkpoint(model, trial, metrics) + + def _save(self, output_dir: Optional[str] = None, state_dict=None): + if getattr(self.args, 'tune_mm_mlp_adapter', False): + pass + else: + super(GeoChatTrainer, self)._save(output_dir, state_dict) diff --git a/Geo/GeochatP-main/geochat/train/llama_flash_attn_monkey_patch.py b/Geo/GeochatP-main/geochat/train/llama_flash_attn_monkey_patch.py new file mode 100644 index 0000000000000000000000000000000000000000..31db2eff8d1c4b3ae645583dfc5e156e818b6f1c --- /dev/null +++ b/Geo/GeochatP-main/geochat/train/llama_flash_attn_monkey_patch.py @@ -0,0 +1,115 @@ +from typing import Optional, Tuple +import warnings + +import torch + +import transformers +from transformers.models.llama.modeling_llama import apply_rotary_pos_emb, repeat_kv + +try: + from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func +except ImportError: + from flash_attn.flash_attn_interface import flash_attn_varlen_qkvpacked_func as flash_attn_unpadded_qkvpacked_func +from flash_attn.bert_padding import unpad_input, pad_input + + +def forward( + self, + hidden_states: torch.Tensor, + attention_mask: Optional[torch.Tensor] = None, + position_ids: Optional[torch.Tensor] = None, + past_key_value: Optional[Tuple[torch.Tensor]] = None, + output_attentions: bool = False, + use_cache: bool = False, +) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: + if output_attentions: + warnings.warn( + "Output attentions is not supported for patched `LlamaAttention`, returning `None` instead." + ) + + bsz, q_len, _ = hidden_states.size() + + query_states = ( + self.q_proj(hidden_states) + .view(bsz, q_len, self.num_heads, self.head_dim) + .transpose(1, 2) + ) + key_states = ( + self.k_proj(hidden_states) + .view(bsz, q_len, self.num_key_value_heads, self.head_dim) + .transpose(1, 2) + ) + value_states = ( + self.v_proj(hidden_states) + .view(bsz, q_len, self.num_key_value_heads, self.head_dim) + .transpose(1, 2) + ) # shape: (b, num_heads, s, head_dim) + + kv_seq_len = key_states.shape[-2] + if past_key_value is not None: + kv_seq_len += past_key_value[0].shape[-2] + + cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) + query_states, key_states = apply_rotary_pos_emb( + query_states, key_states, cos, sin, position_ids + ) + + if past_key_value is not None: + # reuse k, v + key_states = torch.cat([past_key_value[0], key_states], dim=2) + value_states = torch.cat([past_key_value[1], value_states], dim=2) + + past_key_value = (key_states, value_states) if use_cache else None + + # repeat k/v heads if n_kv_heads < n_heads + key_states = repeat_kv(key_states, self.num_key_value_groups) + value_states = repeat_kv(value_states, self.num_key_value_groups) + + # Transform the data into the format required by flash attention + qkv = torch.stack([query_states, key_states, value_states], dim=2) + qkv = qkv.transpose(1, 3) # shape: [b, s, 3, num_heads, head_dim] + key_padding_mask = attention_mask + + if key_padding_mask is None: + qkv = qkv.reshape(-1, 3, self.num_heads, self.head_dim) + cu_q_lens = torch.arange( + 0, (bsz + 1) * q_len, step=q_len, dtype=torch.int32, device=qkv.device + ) + max_s = q_len + output = flash_attn_unpadded_qkvpacked_func( + qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True + ) + output = output.view(bsz, q_len, -1) + else: + qkv = qkv.reshape(bsz, q_len, -1) + qkv, indices, cu_q_lens, max_s = unpad_input(qkv, key_padding_mask) + qkv = qkv.view(-1, 3, self.num_heads, self.head_dim) + output_unpad = flash_attn_unpadded_qkvpacked_func( + qkv, cu_q_lens, max_s, 0.0, softmax_scale=None, causal=True + ) + output_unpad = output_unpad.reshape(-1, self.num_heads * self.head_dim) + output = pad_input(output_unpad, indices, bsz, q_len) + + return self.o_proj(output), None, past_key_value + + +# Disable the transformation of the attention mask in LlamaModel as the flash attention +# requires the attention mask to be the same as the key_padding_mask +def _prepare_decoder_attention_mask( + self, attention_mask, input_shape, inputs_embeds, past_key_values_length +): + # [bsz, seq_len] + return attention_mask + + +def replace_llama_attn_with_flash_attn(): + cuda_major, cuda_minor = torch.cuda.get_device_capability() + if cuda_major < 8: + warnings.warn( + "Flash attention is only supported on A100 or H100 GPU during training due to head dim > 64 backward." + "ref: https://github.com/HazyResearch/flash-attention/issues/190#issuecomment-1523359593" + ) + transformers.models.llama.modeling_llama.LlamaModel._prepare_decoder_attention_mask = ( + _prepare_decoder_attention_mask + ) + transformers.models.llama.modeling_llama.LlamaAttention.forward = forward diff --git a/Geo/GeochatP-main/geochat/train/train.py b/Geo/GeochatP-main/geochat/train/train.py new file mode 100644 index 0000000000000000000000000000000000000000..e2de678368176479561c0528d8e2372a4877f79d --- /dev/null +++ b/Geo/GeochatP-main/geochat/train/train.py @@ -0,0 +1,957 @@ +# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: +# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: +# Copyright 2023 Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li +# +# Licensed under the Apache License, Version 2.0 (the "License"); +# you may not use this file except in compliance with the License. +# You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, software +# distributed under the License is distributed on an "AS IS" BASIS, +# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +# See the License for the specific language governing permissions and +# limitations under the License. + +import os +import copy +from dataclasses import dataclass, field +import json +import logging +import pathlib +from typing import Dict, Optional, Sequence, List + +import torch + +import transformers + +from geochat.constants import IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN, DEFAULT_IM_START_TOKEN, DEFAULT_IM_END_TOKEN +from torch.utils.data import Dataset +from geochat.train.geochat_trainer import GeoChatTrainer + +from geochat import conversation as conversation_lib +from geochat.model import * +from geochat.mm_utils import tokenizer_image_token + +from PIL import Image + + +local_rank = None + + +def rank0_print(*args): + if local_rank == 0: + print(*args) + + +@dataclass +class ModelArguments: + model_name_or_path: Optional[str] = field(default="facebook/opt-125m") + version: Optional[str] = field(default="v0") + freeze_backbone: bool = field(default=False) + tune_mm_mlp_adapter: bool = field(default=False) + vision_tower: Optional[str] = field(default=None) + mm_vision_select_layer: Optional[int] = field(default=-1) # default to the last layer + pretrain_mm_mlp_adapter: Optional[str] = field(default=None) + mm_projector_type: Optional[str] = field(default='linear') + mm_use_im_start_end: bool = field(default=False) + mm_use_im_patch_token: bool = field(default=True) + mm_vision_select_feature: Optional[str] = field(default="patch") + + +@dataclass +class DataArguments: + data_path: str = field(default=None, + metadata={"help": "Path to the training data."}) + lazy_preprocess: bool = False + is_multimodal: bool = False + image_folder: Optional[str] = field(default=None) + image_aspect_ratio: str = 'square' + image_grid_pinpoints: Optional[str] = field(default=None) + + +@dataclass +class TrainingArguments(transformers.TrainingArguments): + cache_dir: Optional[str] = field(default=None) + optim: str = field(default="adamw_torch") + remove_unused_columns: bool = field(default=False) + freeze_mm_mlp_adapter: bool = field(default=False) + mpt_attn_impl: Optional[str] = field(default="triton") + model_max_length: int = field( + default=512, + metadata={ + "help": + "Maximum sequence length. Sequences will be right padded (and possibly truncated)." + }, + ) + double_quant: bool = field( + default=True, + metadata={"help": "Compress the quantization statistics through double quantization."} + ) + quant_type: str = field( + default="nf4", + metadata={"help": "Quantization data type to use. Should be one of `fp4` or `nf4`."} + ) + bits: int = field( + default=16, + metadata={"help": "How many bits to use."} + ) + lora_enable: bool = False + lora_r: int = 64 + lora_alpha: int = 16 + lora_dropout: float = 0.05 + lora_weight_path: str = "" + lora_bias: str = "none" + group_by_modality_length: bool = field(default=False) + + +def maybe_zero_3(param, ignore_status=False, name=None): + from deepspeed import zero + from deepspeed.runtime.zero.partition_parameters import ZeroParamStatus + if hasattr(param, "ds_id"): + if param.ds_status == ZeroParamStatus.NOT_AVAILABLE: + if not ignore_status: + logging.warning(f"{name}: param.ds_status != ZeroParamStatus.NOT_AVAILABLE: {param.ds_status}") + with zero.GatheredParameters([param]): + param = param.data.detach().cpu().clone() + else: + param = param.detach().cpu().clone() + return param + + +# Borrowed from peft.utils.get_peft_model_state_dict +def get_peft_state_maybe_zero_3(named_params, bias): + if bias == "none": + to_return = {k: t for k, t in named_params if "lora_" in k} + elif bias == "all": + to_return = {k: t for k, t in named_params if "lora_" in k or "bias" in k} + elif bias == "lora_only": + to_return = {} + maybe_lora_bias = {} + lora_bias_names = set() + for k, t in named_params: + if "lora_" in k: + to_return[k] = t + bias_name = k.split("lora_")[0] + "bias" + lora_bias_names.add(bias_name) + elif "bias" in k: + maybe_lora_bias[k] = t + for k, t in maybe_lora_bias: + if bias_name in lora_bias_names: + to_return[bias_name] = t + else: + raise NotImplementedError + to_return = {k: maybe_zero_3(v, ignore_status=True) for k, v in to_return.items()} + return to_return + + +def get_peft_state_non_lora_maybe_zero_3(named_params, require_grad_only=True): + to_return = {k: t for k, t in named_params if "lora_" not in k} + if require_grad_only: + to_return = {k: t for k, t in to_return.items() if t.requires_grad} + to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} + return to_return + + +def get_mm_adapter_state_maybe_zero_3(named_params, keys_to_match): + to_return = {k: t for k, t in named_params if any(key_match in k for key_match in keys_to_match)} + to_return = {k: maybe_zero_3(v, ignore_status=True).cpu() for k, v in to_return.items()} + return to_return + + +def find_all_linear_names(model): + cls = torch.nn.Linear + lora_module_names = set() + multimodal_keywords = ['mm_projector', 'vision_tower', 'vision_resampler'] + for name, module in model.named_modules(): + if any(mm_keyword in name for mm_keyword in multimodal_keywords): + continue + if isinstance(module, cls): + names = name.split('.') + lora_module_names.add(names[0] if len(names) == 1 else names[-1]) + + if 'lm_head' in lora_module_names: # needed for 16-bit + lora_module_names.remove('lm_head') + return list(lora_module_names) + + +def safe_save_model_for_hf_trainer(trainer: transformers.Trainer, + output_dir: str): + """Collects the state dict and dump to disk.""" + + if getattr(trainer.args, "tune_mm_mlp_adapter", False): + # Only save Adapter + keys_to_match = ['mm_projector'] + if getattr(trainer.args, "use_im_start_end", False): + keys_to_match.extend(['embed_tokens', 'embed_in']) + + weight_to_save = get_mm_adapter_state_maybe_zero_3(trainer.model.named_parameters(), keys_to_match) + trainer.model.config.save_pretrained(output_dir) + + current_folder = output_dir.split('/')[-1] + parent_folder = os.path.dirname(output_dir) + if trainer.args.local_rank == 0 or trainer.args.local_rank == -1: + if current_folder.startswith('checkpoint-'): + mm_projector_folder = os.path.join(parent_folder, "mm_projector") + os.makedirs(mm_projector_folder, exist_ok=True) + torch.save(weight_to_save, os.path.join(mm_projector_folder, f'{current_folder}.bin')) + else: + torch.save(weight_to_save, os.path.join(output_dir, f'mm_projector.bin')) + return + + if trainer.deepspeed: + torch.cuda.synchronize() + trainer.save_model(output_dir) + return + + state_dict = trainer.model.state_dict() + if trainer.args.should_save: + cpu_state_dict = { + key: value.cpu() + for key, value in state_dict.items() + } + del state_dict + trainer._save(output_dir, state_dict=cpu_state_dict) # noqa + + +def smart_tokenizer_and_embedding_resize( + special_tokens_dict: Dict, + tokenizer: transformers.PreTrainedTokenizer, + model: transformers.PreTrainedModel, +): + """Resize tokenizer and embedding. + + Note: This is the unoptimized version that may make your embedding size not be divisible by 64. + """ + num_new_tokens = tokenizer.add_special_tokens(special_tokens_dict) + model.resize_token_embeddings(len(tokenizer)) + + if num_new_tokens > 0: + input_embeddings = model.get_input_embeddings().weight.data + output_embeddings = model.get_output_embeddings().weight.data + + input_embeddings_avg = input_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + output_embeddings_avg = output_embeddings[:-num_new_tokens].mean( + dim=0, keepdim=True) + + input_embeddings[-num_new_tokens:] = input_embeddings_avg + output_embeddings[-num_new_tokens:] = output_embeddings_avg + + +def _tokenize_fn(strings: Sequence[str], + tokenizer: transformers.PreTrainedTokenizer) -> Dict: + """Tokenize a list of strings.""" + tokenized_list = [ + tokenizer( + text, + return_tensors="pt", + padding="longest", + max_length=tokenizer.model_max_length, + truncation=True, + ) for text in strings + ] + input_ids = labels = [ + tokenized.input_ids[0] for tokenized in tokenized_list + ] + input_ids_lens = labels_lens = [ + tokenized.input_ids.ne(tokenizer.pad_token_id).sum().item() + for tokenized in tokenized_list + ] + return dict( + input_ids=input_ids, + labels=labels, + input_ids_lens=input_ids_lens, + labels_lens=labels_lens, + ) + + +def _mask_targets(target, tokenized_lens, speakers): + # cur_idx = 0 + cur_idx = tokenized_lens[0] + tokenized_lens = tokenized_lens[1:] + target[:cur_idx] = IGNORE_INDEX + for tokenized_len, speaker in zip(tokenized_lens, speakers): + if speaker == "human": + target[cur_idx+2:cur_idx + tokenized_len] = IGNORE_INDEX + cur_idx += tokenized_len + + +def _add_speaker_and_signal(header, source, get_conversation=True): + """Add speaker and start/end signal on each round.""" + BEGIN_SIGNAL = "### " + END_SIGNAL = "\n" + conversation = header + for sentence in source: + from_str = sentence["from"] + if from_str.lower() == "human": + from_str = conversation_lib.default_conversation.roles[0] + elif from_str.lower() == "gpt": + from_str = conversation_lib.default_conversation.roles[1] + else: + from_str = 'unknown' + sentence["value"] = (BEGIN_SIGNAL + from_str + ": " + + sentence["value"] + END_SIGNAL) + if get_conversation: + conversation += sentence["value"] + conversation += BEGIN_SIGNAL + return conversation + + +def preprocess_multimodal( + sources: Sequence[str], + data_args: DataArguments +) -> Dict: + is_multimodal = data_args.is_multimodal + if not is_multimodal: + return sources + + for source in sources: + for sentence in source: + + if DEFAULT_IMAGE_TOKEN in sentence['value']: + sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '').strip() + sentence['value'] = DEFAULT_IMAGE_TOKEN + '\n' + sentence['value'] + sentence['value'] = sentence['value'].strip() + if "mmtag" in conversation_lib.default_conversation.version: + sentence['value'] = sentence['value'].replace(DEFAULT_IMAGE_TOKEN, '' + DEFAULT_IMAGE_TOKEN + '') + replace_token = DEFAULT_IMAGE_TOKEN + if data_args.mm_use_im_start_end: + replace_token = DEFAULT_IM_START_TOKEN + replace_token + DEFAULT_IM_END_TOKEN + sentence["value"] = sentence["value"].replace(DEFAULT_IMAGE_TOKEN, replace_token) + + return sources + + +def preprocess_llama_2( + sources, + tokenizer: transformers.PreTrainedTokenizer, + has_image: bool = False +) -> Dict: + conv = conversation_lib.default_conversation.copy() + roles = {"human": conv.roles[0], "gpt": conv.roles[1]} + + # Apply prompt templates + conversations = [] + for i, source in enumerate(sources): + if roles[source[0]["from"]] != conv.roles[0]: + # Skip the first one if it is not from human + source = source[1:] + + conv.messages = [] + for j, sentence in enumerate(source): + role = roles[sentence["from"]] + assert role == conv.roles[j % 2], f"{i}" + conv.append_message(role, sentence["value"]) + conversations.append(conv.get_prompt()) + + # Tokenize conversations + + if has_image: + input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) + else: + input_ids = tokenizer( + conversations, + return_tensors="pt", + padding="longest", + max_length=tokenizer.model_max_length, + truncation=True, + ).input_ids + + targets = input_ids.clone() + + assert conv.sep_style == conversation_lib.SeparatorStyle.LLAMA_2 + + # Mask targets + sep = "[/INST] " + for conversation, target in zip(conversations, targets): + total_len = int(target.ne(tokenizer.pad_token_id).sum()) + + rounds = conversation.split(conv.sep2) + cur_len = 1 + target[:cur_len] = IGNORE_INDEX + for i, rou in enumerate(rounds): + if rou == "": + break + + parts = rou.split(sep) + if len(parts) != 2: + break + parts[0] += sep + + if has_image: + round_len = len(tokenizer_image_token(rou, tokenizer)) + instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 + else: + round_len = len(tokenizer(rou).input_ids) + instruction_len = len(tokenizer(parts[0]).input_ids) - 2 + + target[cur_len : cur_len + instruction_len] = IGNORE_INDEX + + cur_len += round_len + target[cur_len:] = IGNORE_INDEX + + if cur_len < tokenizer.model_max_length: + if cur_len != total_len: + target[:] = IGNORE_INDEX + print( + f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." + f" (ignored)" + ) + + return dict( + input_ids=input_ids, + labels=targets, + ) + + +def preprocess_v1( + sources, + tokenizer: transformers.PreTrainedTokenizer, + has_image: bool = False +) -> Dict: + conv = conversation_lib.default_conversation.copy() + roles = {"human": conv.roles[0], "gpt": conv.roles[1]} + + # Apply prompt templates + conversations = [] + for i, source in enumerate(sources): + if roles[source[0]["from"]] != conv.roles[0]: + # Skip the first one if it is not from human + source = source[1:] + + conv.messages = [] + for j, sentence in enumerate(source): + role = roles[sentence["from"]] + assert role == conv.roles[j % 2], f"{i}" + conv.append_message(role, sentence["value"]) + conversations.append(conv.get_prompt()) + + # Tokenize conversations + + if has_image: + input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) + else: + input_ids = tokenizer( + conversations, + return_tensors="pt", + padding="longest", + max_length=tokenizer.model_max_length, + truncation=True, + ).input_ids + + targets = input_ids.clone() + + assert conv.sep_style == conversation_lib.SeparatorStyle.TWO + + # Mask targets + sep = conv.sep + conv.roles[1] + ": " + for conversation, target in zip(conversations, targets): + total_len = int(target.ne(tokenizer.pad_token_id).sum()) + + rounds = conversation.split(conv.sep2) + cur_len = 1 + target[:cur_len] = IGNORE_INDEX + for i, rou in enumerate(rounds): + if rou == "": + break + + parts = rou.split(sep) + if len(parts) != 2: + break + parts[0] += sep + + if has_image: + round_len = len(tokenizer_image_token(rou, tokenizer)) + instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) - 2 + else: + round_len = len(tokenizer(rou).input_ids) + instruction_len = len(tokenizer(parts[0]).input_ids) - 2 + + target[cur_len : cur_len + instruction_len] = IGNORE_INDEX + + cur_len += round_len + target[cur_len:] = IGNORE_INDEX + + if cur_len < tokenizer.model_max_length: + if cur_len != total_len: + target[:] = IGNORE_INDEX + print( + f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." + f" (ignored)" + ) + + return dict( + input_ids=input_ids, + labels=targets, + ) + + +def preprocess_mpt( + sources, + tokenizer: transformers.PreTrainedTokenizer, +) -> Dict: + conv = conversation_lib.default_conversation.copy() + roles = {"human": conv.roles[0], "gpt": conv.roles[1]} + + # Apply prompt templates + conversations = [] + for i, source in enumerate(sources): + if roles[source[0]["from"]] != conv.roles[0]: + # Skip the first one if it is not from human + source = source[1:] + + conv.messages = [] + for j, sentence in enumerate(source): + role = roles[sentence["from"]] + assert role == conv.roles[j % 2], f"{i}" + conv.append_message(role, sentence["value"]) + conversations.append(conv.get_prompt()) + + # Tokenize conversations + input_ids = torch.stack([tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations], dim=0) + targets = input_ids.clone() + assert conv.sep_style == conversation_lib.SeparatorStyle.MPT + + # Mask targets + sep = conv.sep + conv.roles[1] + for conversation, target in zip(conversations, targets): + total_len = int(target.ne(tokenizer.pad_token_id).sum()) + + rounds = conversation.split(conv.sep) + re_rounds = [conv.sep.join(rounds[:3])] # system + user + gpt + for conv_idx in range(3, len(rounds), 2): + re_rounds.append(conv.sep.join(rounds[conv_idx:conv_idx+2])) # user + gpt + cur_len = 0 + target[:cur_len] = IGNORE_INDEX + for i, rou in enumerate(re_rounds): + if rou == "": + break + + parts = rou.split(sep) + if len(parts) != 2: + break + parts[0] += sep + round_len = len(tokenizer_image_token(rou, tokenizer)) + len(tokenizer_image_token(conv.sep, tokenizer)) + instruction_len = len(tokenizer_image_token(parts[0], tokenizer)) + target[cur_len : cur_len + instruction_len] = IGNORE_INDEX + + cur_len += round_len + target[cur_len:] = IGNORE_INDEX + + if cur_len < tokenizer.model_max_length: + if cur_len != total_len: + target[:] = IGNORE_INDEX + print( + f"WARNING: tokenization mismatch: {cur_len} vs. {total_len}." + f" (ignored)" + ) + + return dict( + input_ids=input_ids, + labels=targets, + ) + + +def preprocess_plain( + sources: Sequence[str], + tokenizer: transformers.PreTrainedTokenizer, +) -> Dict: + # add end signal and concatenate together + conversations = [] + for source in sources: + assert len(source) == 2 + assert DEFAULT_IMAGE_TOKEN in source[0]['value'] + source[0]['value'] = DEFAULT_IMAGE_TOKEN + conversation = source[0]['value'] + source[1]['value'] + conversation_lib.default_conversation.sep + conversations.append(conversation) + # tokenize conversations + input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] + targets = copy.deepcopy(input_ids) + for target, source in zip(targets, sources): + tokenized_len = len(tokenizer_image_token(source[0]['value'], tokenizer)) + target[:tokenized_len] = IGNORE_INDEX + + return dict(input_ids=input_ids, labels=targets) + + +def preprocess( + sources: Sequence[str], + tokenizer: transformers.PreTrainedTokenizer, + has_image: bool = False +) -> Dict: + """ + Given a list of sources, each is a conversation list. This transform: + 1. Add signal '### ' at the beginning each sentence, with end signal '\n'; + 2. Concatenate conversations together; + 3. Tokenize the concatenated conversation; + 4. Make a deepcopy as the target. Mask human words with IGNORE_INDEX. + """ + if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.PLAIN: + return preprocess_plain(sources, tokenizer) + if conversation_lib.default_conversation.sep_style == conversation_lib.SeparatorStyle.LLAMA_2: + return preprocess_llama_2(sources, tokenizer, has_image=has_image) + if conversation_lib.default_conversation.version.startswith("v1"): + return preprocess_v1(sources, tokenizer, has_image=has_image) + if conversation_lib.default_conversation.version == "mpt": + return preprocess_mpt(sources, tokenizer) + # add end signal and concatenate together + conversations = [] + for source in sources: + header = f"{conversation_lib.default_conversation.system}\n\n" + conversation = _add_speaker_and_signal(header, source) + conversations.append(conversation) + # tokenize conversations + def get_tokenize_len(prompts): + return [len(tokenizer_image_token(prompt, tokenizer)) for prompt in prompts] + + if has_image: + input_ids = [tokenizer_image_token(prompt, tokenizer, return_tensors='pt') for prompt in conversations] + else: + conversations_tokenized = _tokenize_fn(conversations, tokenizer) + input_ids = conversations_tokenized["input_ids"] + + targets = copy.deepcopy(input_ids) + for target, source in zip(targets, sources): + if has_image: + tokenized_lens = get_tokenize_len([header] + [s["value"] for s in source]) + else: + tokenized_lens = _tokenize_fn([header] + [s["value"] for s in source], tokenizer)["input_ids_lens"] + speakers = [sentence["from"] for sentence in source] + _mask_targets(target, tokenized_lens, speakers) + + return dict(input_ids=input_ids, labels=targets) + + +class LazySupervisedDataset(Dataset): + """Dataset for supervised fine-tuning.""" + + def __init__(self, data_path: str, + tokenizer: transformers.PreTrainedTokenizer, + data_args: DataArguments): + super(LazySupervisedDataset, self).__init__() + list_data_dict = json.load(open(data_path, "r")) + + rank0_print("Formatting inputs...Skip in lazy mode") + self.tokenizer = tokenizer + self.list_data_dict = list_data_dict + self.data_args = data_args + + def __len__(self): + return len(self.list_data_dict) + + @property + def lengths(self): + length_list = [] + for sample in self.list_data_dict: + img_tokens = 128 if 'image' in sample else 0 + length_list.append(sum(len(conv['value'].split()) for conv in sample['conversations']) + img_tokens) + return length_list + + @property + def modality_lengths(self): + length_list = [] + for sample in self.list_data_dict: + cur_len = sum(len(conv['value'].split()) for conv in sample['conversations']) + cur_len = cur_len if 'image' in sample else -cur_len + length_list.append(cur_len) + return length_list + + def __getitem__(self, i) -> Dict[str, torch.Tensor]: + sources = self.list_data_dict[i] + if isinstance(i, int): + sources = [sources] + assert len(sources) == 1, "Don't know why it is wrapped to a list" # FIXME + if 'image' in sources[0]: + image_file = self.list_data_dict[i]['image'] + image_folder = self.data_args.image_folder + processor = self.data_args.image_processor + image = Image.open((os.path.join(image_folder, image_file)).strip()).convert('RGB') + + if self.data_args.image_aspect_ratio == 'pad': + def expand2square(pil_img, background_color): + width, height = pil_img.size + if width == height: + return pil_img + elif width > height: + result = Image.new(pil_img.mode, (width, width), background_color) + result.paste(pil_img, (0, (width - height) // 2)) + return result + else: + result = Image.new(pil_img.mode, (height, height), background_color) + result.paste(pil_img, ((height - width) // 2, 0)) + return result + image = expand2square(image, tuple(int(x*255) for x in processor.image_mean)) + # image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] + image = processor.preprocess(image,do_resize=True,crop_size ={'height': 504, 'width': 504},size = {'shortest_edge': 504}, return_tensors='pt')['pixel_values'][0] + else: + # image = processor.preprocess(image, return_tensors='pt')['pixel_values'][0] + image = processor.preprocess(image,do_resize=True,crop_size ={'height': 504, 'width': 504},size = {'shortest_edge': 504}, return_tensors='pt')['pixel_values'][0] + + sources = preprocess_multimodal( + copy.deepcopy([e["conversations"] for e in sources]), + self.data_args) + else: + sources = copy.deepcopy([e["conversations"] for e in sources]) + data_dict = preprocess( + sources, + self.tokenizer, + has_image=('image' in self.list_data_dict[i])) + if isinstance(i, int): + data_dict = dict(input_ids=data_dict["input_ids"][0], + labels=data_dict["labels"][0]) + + # image exist in the data + if 'image' in self.list_data_dict[i]: + data_dict['image'] = image + elif self.data_args.is_multimodal: + # image does not exist in the data, but the model is multimodal + crop_size = self.data_args.image_processor.crop_size + data_dict['image'] = torch.zeros(3, crop_size['height'], crop_size['width']) + return data_dict + + +@dataclass +class DataCollatorForSupervisedDataset(object): + """Collate examples for supervised fine-tuning.""" + + tokenizer: transformers.PreTrainedTokenizer + + def __call__(self, instances: Sequence[Dict]) -> Dict[str, torch.Tensor]: + input_ids, labels = tuple([instance[key] for instance in instances] + for key in ("input_ids", "labels")) + input_ids = torch.nn.utils.rnn.pad_sequence( + input_ids, + batch_first=True, + padding_value=self.tokenizer.pad_token_id) + labels = torch.nn.utils.rnn.pad_sequence(labels, + batch_first=True, + padding_value=IGNORE_INDEX) + input_ids = input_ids[:, :self.tokenizer.model_max_length] + labels = labels[:, :self.tokenizer.model_max_length] + batch = dict( + input_ids=input_ids, + labels=labels, + attention_mask=input_ids.ne(self.tokenizer.pad_token_id), + ) + + if 'image' in instances[0]: + images = [instance['image'] for instance in instances] + if all(x is not None and x.shape == images[0].shape for x in images): + batch['images'] = torch.stack(images) + else: + batch['images'] = images + + return batch + + +def make_supervised_data_module(tokenizer: transformers.PreTrainedTokenizer, + data_args) -> Dict: + """Make dataset and collator for supervised fine-tuning.""" + train_dataset = LazySupervisedDataset(tokenizer=tokenizer, + data_path=data_args.data_path, + data_args=data_args) + data_collator = DataCollatorForSupervisedDataset(tokenizer=tokenizer) + return dict(train_dataset=train_dataset, + eval_dataset=None, + data_collator=data_collator) + + +def train(): + global local_rank + + parser = transformers.HfArgumentParser( + (ModelArguments, DataArguments, TrainingArguments)) + model_args, data_args, training_args = parser.parse_args_into_dataclasses() + local_rank = training_args.local_rank + compute_dtype = (torch.float16 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) + + bnb_model_from_pretrained_args = {} + if training_args.bits in [4, 8]: + from transformers import BitsAndBytesConfig + bnb_model_from_pretrained_args.update(dict( + device_map={"": training_args.device}, + load_in_4bit=training_args.bits == 4, + load_in_8bit=training_args.bits == 8, + quantization_config=BitsAndBytesConfig( + load_in_4bit=training_args.bits == 4, + load_in_8bit=training_args.bits == 8, + llm_int8_threshold=6.0, + llm_int8_has_fp16_weight=False, + bnb_4bit_compute_dtype=compute_dtype, + bnb_4bit_use_double_quant=training_args.double_quant, + bnb_4bit_quant_type=training_args.quant_type # {'fp4', 'nf4'} + ) + )) + + if model_args.vision_tower is not None: + if 'mpt' in model_args.model_name_or_path: + config = transformers.AutoConfig.from_pretrained(model_args.model_name_or_path, trust_remote_code=True) + config.attn_config['attn_impl'] = training_args.mpt_attn_impl + model = GeoChatMPTForCausalLM.from_pretrained( + model_args.model_name_or_path, + config=config, + cache_dir=training_args.cache_dir, + **bnb_model_from_pretrained_args + ) + else: + model = GeoChatLlamaForCausalLM.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + **bnb_model_from_pretrained_args + ) + else: + model = transformers.LlamaForCausalLM.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + **bnb_model_from_pretrained_args + ) + model.config.use_cache = False + + if model_args.freeze_backbone: + model.model.requires_grad_(False) + + if training_args.bits in [4, 8]: + from peft import prepare_model_for_kbit_training + model.config.torch_dtype=(torch.float32 if training_args.fp16 else (torch.bfloat16 if training_args.bf16 else torch.float32)) + model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=training_args.gradient_checkpointing) + + if training_args.gradient_checkpointing: + if hasattr(model, "enable_input_require_grads"): + model.enable_input_require_grads() + else: + def make_inputs_require_grad(module, input, output): + output.requires_grad_(True) + model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) + + if training_args.lora_enable: + from peft import LoraConfig, get_peft_model + lora_config = LoraConfig( + r=training_args.lora_r, + lora_alpha=training_args.lora_alpha, + target_modules=find_all_linear_names(model), + lora_dropout=training_args.lora_dropout, + bias=training_args.lora_bias, + task_type="CAUSAL_LM", + ) + if training_args.bits == 16: + if training_args.bf16: + model.to(torch.bfloat16) + if training_args.fp16: + model.to(torch.float16) + rank0_print("Adding LoRA adapters...") + model = get_peft_model(model, lora_config) + + if 'mpt' in model_args.model_name_or_path: + tokenizer = transformers.AutoTokenizer.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + model_max_length=training_args.model_max_length, + padding_side="right" + ) + else: + tokenizer = transformers.AutoTokenizer.from_pretrained( + model_args.model_name_or_path, + cache_dir=training_args.cache_dir, + model_max_length=training_args.model_max_length, + padding_side="right", + use_fast=False, + ) + + if model_args.version == "v0": + if tokenizer.pad_token is None: + smart_tokenizer_and_embedding_resize( + special_tokens_dict=dict(pad_token="[PAD]"), + tokenizer=tokenizer, + model=model, + ) + elif model_args.version == "v0.5": + tokenizer.pad_token = tokenizer.unk_token + else: + tokenizer.pad_token = tokenizer.unk_token + if model_args.version in conversation_lib.conv_templates: + conversation_lib.default_conversation = conversation_lib.conv_templates[model_args.version] + else: + conversation_lib.default_conversation = conversation_lib.conv_templates["vicuna_v1"] + + if model_args.vision_tower is not None: + model.get_model().initialize_vision_modules( + model_args=model_args, + fsdp=training_args.fsdp + ) + + vision_tower = model.get_vision_tower() + vision_tower.to(dtype=torch.bfloat16 if training_args.bf16 else torch.float16, device=training_args.device) + + data_args.image_processor = vision_tower.image_processor + data_args.is_multimodal = True + + model.config.image_aspect_ratio = data_args.image_aspect_ratio + model.config.image_grid_pinpoints = data_args.image_grid_pinpoints + + model.config.tune_mm_mlp_adapter = training_args.tune_mm_mlp_adapter = model_args.tune_mm_mlp_adapter + if model_args.tune_mm_mlp_adapter: + model.requires_grad_(False) + for p in model.get_model().mm_projector.parameters(): + p.requires_grad = True + + model.config.freeze_mm_mlp_adapter = training_args.freeze_mm_mlp_adapter + if training_args.freeze_mm_mlp_adapter: + for p in model.get_model().mm_projector.parameters(): + p.requires_grad = False + + if training_args.bits in [4, 8]: + model.get_model().mm_projector.to(dtype=compute_dtype, device=training_args.device) + + model.config.mm_use_im_start_end = data_args.mm_use_im_start_end = model_args.mm_use_im_start_end + training_args.use_im_start_end = model_args.mm_use_im_start_end + model.config.mm_use_im_patch_token = model_args.mm_use_im_patch_token + model.initialize_vision_tokenizer(model_args, tokenizer=tokenizer) + + if training_args.bits in [4, 8]: + from peft.tuners.lora import LoraLayer + for name, module in model.named_modules(): + if isinstance(module, LoraLayer): + if training_args.bf16: + module = module.to(torch.bfloat16) + if 'norm' in name: + module = module.to(torch.float32) + if 'lm_head' in name or 'embed_tokens' in name: + if hasattr(module, 'weight'): + if training_args.bf16 and module.weight.dtype == torch.float32: + module = module.to(torch.bfloat16) + + data_module = make_supervised_data_module(tokenizer=tokenizer, + data_args=data_args) + trainer = GeoChatTrainer(model=model, + tokenizer=tokenizer, + args=training_args, + **data_module) + + if list(pathlib.Path(training_args.output_dir).glob("checkpoint-*")): + trainer.train(resume_from_checkpoint=True) + else: + trainer.train() + trainer.save_state() + + model.config.use_cache = True + + if training_args.lora_enable: + state_dict = get_peft_state_maybe_zero_3( + model.named_parameters(), training_args.lora_bias + ) + non_lora_state_dict = get_peft_state_non_lora_maybe_zero_3( + model.named_parameters() + ) + if training_args.local_rank == 0 or training_args.local_rank == -1: + model.config.save_pretrained(training_args.output_dir) + model.save_pretrained(training_args.output_dir, state_dict=state_dict) + torch.save(non_lora_state_dict, os.path.join(training_args.output_dir, 'non_lora_trainables.bin')) + else: + safe_save_model_for_hf_trainer(trainer=trainer, + output_dir=training_args.output_dir) + + +if __name__ == "__main__": + train() diff --git a/Geo/GeochatP-main/geochat/train/train_mem.py b/Geo/GeochatP-main/geochat/train/train_mem.py new file mode 100644 index 0000000000000000000000000000000000000000..6f425f9457168cc83447ab117b1e8ac99557009d --- /dev/null +++ b/Geo/GeochatP-main/geochat/train/train_mem.py @@ -0,0 +1,13 @@ +# Adopted from https://github.com/lm-sys/FastChat. Below is the original copyright: +# Adopted from tatsu-lab@stanford_alpaca. Below is the original copyright: +# Make it more memory efficient by monkey patching the LLaMA model with FlashAttn. + +# Need to call this before importing transformers. +from geochat.train.llama_flash_attn_monkey_patch import replace_llama_attn_with_flash_attn + +replace_llama_attn_with_flash_attn() + +from geochat.train.train import train + +if __name__ == "__main__": + train() diff --git a/Geo/GeochatP-main/geochat/utils.py b/Geo/GeochatP-main/geochat/utils.py new file mode 100644 index 0000000000000000000000000000000000000000..c75ddbea7dbc0c2f1b20e095dcd47ca9362e8456 --- /dev/null +++ b/Geo/GeochatP-main/geochat/utils.py @@ -0,0 +1,126 @@ +import datetime +import logging +import logging.handlers +import os +import sys + +import requests + +from geochat.constants import LOGDIR + +server_error_msg = "**NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.**" +moderation_msg = "YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES. PLEASE TRY AGAIN." + +handler = None + + +def build_logger(logger_name, logger_filename): + global handler + + formatter = logging.Formatter( + fmt="%(asctime)s | %(levelname)s | %(name)s | %(message)s", + datefmt="%Y-%m-%d %H:%M:%S", + ) + + # Set the format of root handlers + if not logging.getLogger().handlers: + logging.basicConfig(level=logging.INFO) + logging.getLogger().handlers[0].setFormatter(formatter) + + # Redirect stdout and stderr to loggers + stdout_logger = logging.getLogger("stdout") + stdout_logger.setLevel(logging.INFO) + sl = StreamToLogger(stdout_logger, logging.INFO) + sys.stdout = sl + + stderr_logger = logging.getLogger("stderr") + stderr_logger.setLevel(logging.ERROR) + sl = StreamToLogger(stderr_logger, logging.ERROR) + sys.stderr = sl + + # Get logger + logger = logging.getLogger(logger_name) + logger.setLevel(logging.INFO) + + # Add a file handler for all loggers + if handler is None: + os.makedirs(LOGDIR, exist_ok=True) + filename = os.path.join(LOGDIR, logger_filename) + handler = logging.handlers.TimedRotatingFileHandler( + filename, when='D', utc=True) + handler.setFormatter(formatter) + + for name, item in logging.root.manager.loggerDict.items(): + if isinstance(item, logging.Logger): + item.addHandler(handler) + + return logger + + +class StreamToLogger(object): + """ + Fake file-like stream object that redirects writes to a logger instance. + """ + def __init__(self, logger, log_level=logging.INFO): + self.terminal = sys.stdout + self.logger = logger + self.log_level = log_level + self.linebuf = '' + + def __getattr__(self, attr): + return getattr(self.terminal, attr) + + def write(self, buf): + temp_linebuf = self.linebuf + buf + self.linebuf = '' + for line in temp_linebuf.splitlines(True): + # From the io.TextIOWrapper docs: + # On output, if newline is None, any '\n' characters written + # are translated to the system default line separator. + # By default sys.stdout.write() expects '\n' newlines and then + # translates them so this is still cross platform. + if line[-1] == '\n': + self.logger.log(self.log_level, line.rstrip()) + else: + self.linebuf += line + + def flush(self): + if self.linebuf != '': + self.logger.log(self.log_level, self.linebuf.rstrip()) + self.linebuf = '' + + +def disable_torch_init(): + """ + Disable the redundant torch default initialization to accelerate model creation. + """ + import torch + setattr(torch.nn.Linear, "reset_parameters", lambda self: None) + setattr(torch.nn.LayerNorm, "reset_parameters", lambda self: None) + + +def violates_moderation(text): + """ + Check whether the text violates OpenAI moderation API. + """ + url = "https://api.openai.com/v1/moderations" + headers = {"Content-Type": "application/json", + "Authorization": "Bearer " + os.environ["OPENAI_API_KEY"]} + text = text.replace("\n", "") + data = "{" + '"input": ' + f'"{text}"' + "}" + data = data.encode("utf-8") + try: + ret = requests.post(url, headers=headers, data=data, timeout=5) + flagged = ret.json()["results"][0]["flagged"] + except requests.exceptions.RequestException as e: + flagged = False + except KeyError as e: + flagged = False + + return flagged + + +def pretty_print_semaphore(semaphore): + if semaphore is None: + return "None" + return f"Semaphore(value={semaphore._value}, locked={semaphore.locked()})" diff --git a/Geo/GeochatP-main/geochat_demo.py b/Geo/GeochatP-main/geochat_demo.py new file mode 100644 index 0000000000000000000000000000000000000000..939ef3444933f8b4e934fcdd5f4e9cc128acccf7 --- /dev/null +++ b/Geo/GeochatP-main/geochat_demo.py @@ -0,0 +1,706 @@ +import argparse +import os +import random +from collections import defaultdict + +import cv2 +import re +import math +import numpy as np +from PIL import Image +import torch +import html +import gradio as gr + +import torchvision.transforms as T +import torch.backends.cudnn as cudnn + +from geochat.conversation import conv_templates, Chat +from geochat.model.builder import load_pretrained_model +from geochat.mm_utils import get_model_name_from_path + + +def parse_args(): + parser = argparse.ArgumentParser(description="Demo") + # parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--gpu-id", type=str,default=0) + parser.add_argument("--device", type=str, default="cuda") + parser.add_argument("--conv-mode", type=str, default=None) + parser.add_argument("--max-new-tokens", type=int, default=300) + parser.add_argument("--load-8bit", action="store_true") + parser.add_argument("--load-4bit", action="store_true") + parser.add_argument("--debug", action="store_true") + parser.add_argument("--image-aspect-ratio", type=str, default='pad') + # args = parser.parse_args() + args = parser.parse_args() + return args + + +random.seed(42) +np.random.seed(42) +torch.manual_seed(42) + +cudnn.benchmark = False +cudnn.deterministic = True + +print('Initializing Chat') +args = parse_args() +# cfg = Config(args) + +model_name = get_model_name_from_path(args.model_path) +tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device) + +device = 'cuda:{}'.format(args.gpu_id) + +# model_config = cfg.model_cfg +# model_config.device_8bit = args.gpu_id +# model_cls = registry.get_model_class(model_config.arch) +# model = model_cls.from_config(model_config).to(device) +bounding_box_size = 100 + +# vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train +# vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) + +model = model.eval() + +CONV_VISION = conv_templates['llava_v1'].copy() + +def bbox_and_angle_to_polygon(x1, y1, x2, y2, a): + # Calculate center coordinates + x_ctr = (x1 + x2) / 2 + y_ctr = (y1 + y2) / 2 + + # Calculate width and height + w = abs(x2 - x1) + h = abs(y2 - y1) + + # Calculate the angle in radians + angle_rad = math.radians(a) + + # Calculate coordinates of the four corners of the rotated bounding box + cos_a = math.cos(angle_rad) + sin_a = math.sin(angle_rad) + + x1_rot = cos_a * (-w / 2) - sin_a * (-h / 2) + x_ctr + y1_rot = sin_a * (-w / 2) + cos_a * (-h / 2) + y_ctr + + x2_rot = cos_a * (w / 2) - sin_a * (-h / 2) + x_ctr + y2_rot = sin_a * (w / 2) + cos_a * (-h / 2) + y_ctr + + x3_rot = cos_a * (w / 2) - sin_a * (h / 2) + x_ctr + y3_rot = sin_a * (w / 2) + cos_a * (h / 2) + y_ctr + + x4_rot = cos_a * (-w / 2) - sin_a * (h / 2) + x_ctr + y4_rot = sin_a * (-w / 2) + cos_a * (h / 2) + y_ctr + + # Return the polygon coordinates + polygon_coords = np.array((x1_rot, y1_rot, x2_rot, y2_rot, x3_rot, y3_rot, x4_rot, y4_rot)) + + return polygon_coords + +def rotate_bbox(top_right, bottom_left, angle_degrees): + # Convert angle to radians + angle_radians = np.radians(angle_degrees) + + # Calculate the center of the rectangle + center = ((top_right[0] + bottom_left[0]) / 2, (top_right[1] + bottom_left[1]) / 2) + + # Calculate the width and height of the rectangle + width = top_right[0] - bottom_left[0] + height = top_right[1] - bottom_left[1] + + # Create a rotation matrix + rotation_matrix = cv2.getRotationMatrix2D(center, angle_degrees, 1) + + # Create an array of the rectangle corners + rectangle_points = np.array([[bottom_left[0], bottom_left[1]], + [top_right[0], bottom_left[1]], + [top_right[0], top_right[1]], + [bottom_left[0], top_right[1]]], dtype=np.float32) + + # Rotate the rectangle points + rotated_rectangle = cv2.transform(np.array([rectangle_points]), rotation_matrix)[0] + + return rotated_rectangle +def extract_substrings(string): + # first check if there is no-finished bracket + index = string.rfind('}') + if index != -1: + string = string[:index + 1] + + pattern = r'

(.*?)\}(?!<)' + matches = re.findall(pattern, string) + substrings = [match for match in matches] + + return substrings + + +def is_overlapping(rect1, rect2): + x1, y1, x2, y2 = rect1 + x3, y3, x4, y4 = rect2 + return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) + + +def computeIoU(bbox1, bbox2): + x1, y1, x2, y2 = bbox1 + x3, y3, x4, y4 = bbox2 + intersection_x1 = max(x1, x3) + intersection_y1 = max(y1, y3) + intersection_x2 = min(x2, x4) + intersection_y2 = min(y2, y4) + intersection_area = max(0, intersection_x2 - intersection_x1 + 1) * max(0, intersection_y2 - intersection_y1 + 1) + bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1) + bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1) + union_area = bbox1_area + bbox2_area - intersection_area + iou = intersection_area / union_area + return iou + + +def save_tmp_img(visual_img): + file_name = "".join([str(random.randint(0, 9)) for _ in range(5)]) + ".jpg" + file_path = "/tmp/gradio" + file_name + visual_img.save(file_path) + return file_path + + +def mask2bbox(mask): + if mask is None: + return '' + mask = mask.resize([100, 100], resample=Image.NEAREST) + mask = np.array(mask)[:, :, 0] + + rows = np.any(mask, axis=1) + cols = np.any(mask, axis=0) + + if rows.sum(): + # Get the top, bottom, left, and right boundaries + rmin, rmax = np.where(rows)[0][[0, -1]] + cmin, cmax = np.where(cols)[0][[0, -1]] + bbox = '{{<{}><{}><{}><{}>}}'.format(cmin, rmin, cmax, rmax) + else: + bbox = '' + + return bbox + + +def escape_markdown(text): + # List of Markdown special characters that need to be escaped + md_chars = ['<', '>'] + + # Escape each special character + for char in md_chars: + text = text.replace(char, '\\' + char) + + return text + + +def reverse_escape(text): + md_chars = ['\\<', '\\>'] + + for char in md_chars: + text = text.replace(char, char[1:]) + + return text + + +colors = [ + (255, 0, 0), + (0, 255, 0), + (0, 0, 255), + (210, 210, 0), + (255, 0, 255), + (0, 255, 255), + (114, 128, 250), + (0, 165, 255), + (0, 128, 0), + (144, 238, 144), + (238, 238, 175), + (255, 191, 0), + (0, 128, 0), + (226, 43, 138), + (255, 0, 255), + (0, 215, 255), +] + +color_map = { + f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for + color_id, color in enumerate(colors) +} + +used_colors = colors + + +def visualize_all_bbox_together(image, generation): + if image is None: + return None, '' + + generation = html.unescape(generation) + + image_width, image_height = image.size + image = image.resize([500, int(500 / image_width * image_height)]) + image_width, image_height = image.size + + string_list = extract_substrings(generation) + if string_list: # it is grounding or detection + mode = 'all' + entities = defaultdict(list) + i = 0 + j = 0 + for string in string_list: + try: + obj, string = string.split('

') + except ValueError: + print('wrong string: ', string) + continue + if "}{" in string: + string=string.replace("}{","}{") + bbox_list = string.split('') + flag = False + for bbox_string in bbox_list: + integers = re.findall(r'-?\d+', bbox_string) + if len(integers)==4: + angle=0 + else: + angle=integers[4] + integers=integers[:-1] + + if len(integers) == 4: + x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3]) + left = x0 / bounding_box_size * image_width + bottom = y0 / bounding_box_size * image_height + right = x1 / bounding_box_size * image_width + top = y1 / bounding_box_size * image_height + + entities[obj].append([left, bottom, right, top,angle]) + + j += 1 + flag = True + if flag: + i += 1 + else: + integers = re.findall(r'-?\d+', generation) + # if len(integers)==4: + angle=0 + # else: + # angle=integers[4] + integers=integers[:-1] + if len(integers) == 4: # it is refer + mode = 'single' + + entities = list() + x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3]) + left = x0 / bounding_box_size * image_width + bottom = y0 / bounding_box_size * image_height + right = x1 / bounding_box_size * image_width + top = y1 / bounding_box_size * image_height + entities.append([left, bottom, right, top,angle]) + else: + # don't detect any valid bbox to visualize + return None, '' + + if len(entities) == 0: + return None, '' + + if isinstance(image, Image.Image): + image_h = image.height + image_w = image.width + image = np.array(image) + + elif isinstance(image, str): + if os.path.exists(image): + pil_img = Image.open(image).convert("RGB") + image = np.array(pil_img)[:, :, [2, 1, 0]] + image_h = pil_img.height + image_w = pil_img.width + else: + raise ValueError(f"invaild image path, {image}") + elif isinstance(image, torch.Tensor): + + image_tensor = image.cpu() + reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None] + reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None] + image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean + pil_img = T.ToPILImage()(image_tensor) + image_h = pil_img.height + image_w = pil_img.width + image = np.array(pil_img)[:, :, [2, 1, 0]] + else: + raise ValueError(f"invalid image format, {type(image)} for {image}") + + indices = list(range(len(entities))) + + new_image = image.copy() + + previous_bboxes = [] + # size of text + text_size = 0.4 + # thickness of text + text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1)) + box_line = 2 + (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) + base_height = int(text_height * 0.675) + text_offset_original = text_height - base_height + text_spaces = 2 + + # num_bboxes = sum(len(x[-1]) for x in entities) + used_colors = colors # random.sample(colors, k=num_bboxes) + + color_id = -1 + for entity_idx, entity_name in enumerate(entities): + if mode == 'single' or mode == 'identify': + bboxes = entity_name + bboxes = [bboxes] + else: + bboxes = entities[entity_name] + color_id += 1 + for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm,angle) in enumerate(bboxes): + skip_flag = False + orig_x1, orig_y1, orig_x2, orig_y2,angle = int(x1_norm), int(y1_norm), int(x2_norm), int(y2_norm), int(angle) + + color = used_colors[entity_idx % len(used_colors)] # tuple(np.random.randint(0, 255, size=3).tolist()) + top_right=(orig_x1,orig_y1) + bottom_left=(orig_x2,orig_y2) + angle=angle + rotated_bbox = rotate_bbox(top_right, bottom_left, angle) + new_image=cv2.polylines(new_image, [rotated_bbox.astype(np.int32)], isClosed=True,thickness=2, color=color) + + # new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line) + + if mode == 'all': + l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1 + + x1 = orig_x1 - l_o + y1 = orig_y1 - l_o + + if y1 < text_height + text_offset_original + 2 * text_spaces: + y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces + x1 = orig_x1 + r_o + + # add text background + (text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, + text_line) + text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - ( + text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1 + + for prev_bbox in previous_bboxes: + if computeIoU((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']) > 0.95 and \ + prev_bbox['phrase'] == entity_name: + skip_flag = True + break + while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']): + text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces) + text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces) + y1 += (text_height + text_offset_original + 2 * text_spaces) + + if text_bg_y2 >= image_h: + text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces)) + text_bg_y2 = image_h + y1 = image_h + break + if not skip_flag: + alpha = 0.5 + for i in range(text_bg_y1, text_bg_y2): + for j in range(text_bg_x1, text_bg_x2): + if i < image_h and j < image_w: + if j < text_bg_x1 + 1.35 * c_width: + # original color + bg_color = color + else: + # white + bg_color = [255, 255, 255] + new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype( + np.uint8) + + cv2.putText( + new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), + cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA + ) + + previous_bboxes.append( + {'bbox': (text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), 'phrase': entity_name}) + + if mode == 'all': + def color_iterator(colors): + while True: + for color in colors: + yield color + + color_gen = color_iterator(colors) + + # Add colors to phrases and remove

+ def colored_phrases(match): + phrase = match.group(1) + color = next(color_gen) + return f'{phrase}' + + generation = re.sub(r'{<\d+><\d+><\d+><\d+>}|', '', generation) + generation_colored = re.sub(r'

(.*?)

', colored_phrases, generation) + else: + generation_colored = '' + + pil_image = Image.fromarray(new_image) + return pil_image, generation_colored + + +def gradio_reset(chat_state, img_list): + if chat_state is not None: + chat_state.messages = [] + if img_list is not None: + img_list = [] + return None, gr.update(value=None, interactive=True), gr.update(placeholder='Upload your image and chat', + interactive=True), chat_state, img_list + + +def image_upload_trigger(upload_flag, replace_flag, img_list): + # set the upload flag to true when receive a new image. + # if there is an old image (and old conversation), set the replace flag to true to reset the conv later. + upload_flag = 1 + if img_list: + replace_flag = 1 + return upload_flag, replace_flag + + +def example_trigger(text_input, image, upload_flag, replace_flag, img_list): + # set the upload flag to true when receive a new image. + # if there is an old image (and old conversation), set the replace flag to true to reset the conv later. + upload_flag = 1 + if img_list or replace_flag == 1: + replace_flag = 1 + + return upload_flag, replace_flag + + +def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag): + if len(user_message) == 0: + text_box_show = 'Input should not be empty!' + else: + text_box_show = '' + + if isinstance(gr_img, dict): + gr_img, mask = gr_img['image'], gr_img['mask'] + else: + mask = None + + if '[identify]' in user_message: + # check if user provide bbox in the text input + integers = re.findall(r'-?\d+', user_message) + if len(integers) != 4: # no bbox in text + bbox = mask2bbox(mask) + user_message = user_message + bbox + + if chat_state is None: + chat_state = CONV_VISION.copy() + + if upload_flag: + if replace_flag: + chat_state = CONV_VISION.copy() # new image, reset everything + replace_flag = 0 + chatbot = [] + img_list = [] + llm_message = chat.upload_img(gr_img, chat_state, img_list) + upload_flag = 0 + + chat.ask(user_message, chat_state) + + chatbot = chatbot + [[user_message, None]] + + if '[identify]' in user_message: + visual_img, _ = visualize_all_bbox_together(gr_img, user_message) + if visual_img is not None: + file_path = save_tmp_img(visual_img) + chatbot = chatbot + [[(file_path,), None]] + + return text_box_show, chatbot, chat_state, img_list, upload_flag, replace_flag + + +# def gradio_answer(chatbot, chat_state, img_list, temperature): +# llm_message = chat.answer(conv=chat_state, +# img_list=img_list, +# temperature=temperature, +# max_new_tokens=500, +# max_length=2000)[0] +# chatbot[-1][1] = llm_message +# return chatbot, chat_state + + +def gradio_stream_answer(chatbot, chat_state, img_list, temperature): + if len(img_list) > 0: + if not isinstance(img_list[0], torch.Tensor): + chat.encode_img(img_list) + streamer = chat.stream_answer(conv=chat_state, + img_list=img_list, + temperature=temperature, + max_new_tokens=500, + max_length=2000) + # chatbot[-1][1] = output + # chat_state.messages[-1][1] = '' + + output = '' + for new_output in streamer: + # print(new_output) + output=output+new_output + print(output) + # if "{" in output: + # chatbot[-1][1]="Grounding and referring expression is still under work." + # else: + output = escape_markdown(output) + # output += escapped + chatbot[-1][1] = output + yield chatbot, chat_state + chat_state.messages[-1][1] = '' + return chatbot, chat_state + + +def gradio_visualize(chatbot, gr_img): + if isinstance(gr_img, dict): + gr_img, mask = gr_img['image'], gr_img['mask'] + + unescaped = reverse_escape(chatbot[-1][1]) + visual_img, generation_color = visualize_all_bbox_together(gr_img, unescaped) + if visual_img is not None: + if len(generation_color): + chatbot[-1][1] = generation_color + file_path = save_tmp_img(visual_img) + chatbot = chatbot + [[None, (file_path,)]] + + return chatbot + + +def gradio_taskselect(idx): + prompt_list = [ + '', + 'Classify the image in the following classes: ', + '[identify] what is this ', + ] + instruct_list = [ + '**Hint:** Type in whatever you want', + '**Hint:** Type in the classes you want the model to classify in', + '**Hint:** Draw a bounding box on the uploaded image then send the command. Click the "clear" botton on the top right of the image before redraw', + ] + return prompt_list[idx], instruct_list[idx] + + + + +chat = Chat(model, image_processor,tokenizer, device=device) + + +title = """

GeoChat Demo

""" +description = 'Welcome to Our GeoChat Chatbot Demo!' +article = """

""" +# article = """

""" + +introduction = ''' +1. Identify: Draw the bounding box on the uploaded image window and CLICK **Send** to generate the bounding box. (CLICK "clear" button before re-drawing next time). +2. No Tag: Input whatever you want and CLICK **Send** without any tagging + +You can also simply chat in free form! +''' + + +text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False, + scale=12) +with gr.Blocks() as demo: + gr.Markdown(title) + # gr.Markdown(description) + gr.Markdown(article) + + with gr.Row(): + with gr.Column(scale=0.5): + image = gr.Image(type="pil", tool='sketch', brush_radius=20) + + temperature = gr.Slider( + minimum=0.1, + maximum=1.5, + value=0.6, + step=0.1, + interactive=True, + label="Temperature", + ) + + clear = gr.Button("Restart") + + gr.Markdown(introduction) + + with gr.Column(): + chat_state = gr.State(value=None) + img_list = gr.State(value=[]) + chatbot = gr.Chatbot(label='GeoChat') + + dataset = gr.Dataset( + components=[gr.Textbox(visible=False)], + samples=[['No Tag'], ['Scene Classification'],['Identify']], + type="index", + label='Task Shortcuts', + ) + task_inst = gr.Markdown('**Hint:** Upload your image and chat') + with gr.Row(): + text_input.render() + send = gr.Button("Send", variant='primary', size='sm', scale=1) + + upload_flag = gr.State(value=0) + replace_flag = gr.State(value=0) + image.upload(image_upload_trigger, [upload_flag, replace_flag, img_list], [upload_flag, replace_flag]) + + with gr.Row(): + with gr.Column(): + gr.Examples(examples=[ + ["demo_images/train_2956_0001.png", "Where are the airplanes located and what is their type?", upload_flag, replace_flag, + img_list], + ["demo_images/7292.JPG", "How many buildings are flooded?", upload_flag, + replace_flag, img_list], + ], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger, + outputs=[upload_flag, replace_flag]) + with gr.Column(): + gr.Examples(examples=[ + ["demo_images/church_183.png", "Classify the image in the following classes: Church, Beach, Dense Residential, Storage Tanks.", + upload_flag, replace_flag, img_list], + ["demo_images/04444.png", "[identify] what is this {<8><26><22><37>}", upload_flag, + replace_flag, img_list], + ], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger, + outputs=[upload_flag, replace_flag]) + + dataset.click( + gradio_taskselect, + inputs=[dataset], + outputs=[text_input, task_inst], + show_progress="hidden", + postprocess=False, + queue=False, + ) + + text_input.submit( + gradio_ask, + [text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag], + [text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False + ).success( + gradio_stream_answer, + [chatbot, chat_state, img_list, temperature], + [chatbot, chat_state] + ).success( + gradio_visualize, + [chatbot, image], + [chatbot], + queue=False, + ) + + send.click( + gradio_ask, + [text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag], + [text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False + ).success( + gradio_stream_answer, + [chatbot, chat_state, img_list, temperature], + [chatbot, chat_state] + ).success( + gradio_visualize, + [chatbot, image], + [chatbot], + queue=False, + ) + + clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, chat_state, img_list], queue=False) + +demo.launch(share=True, enable_queue=True,server_name='0.0.0.0') diff --git a/Geo/GeochatP-main/images/IVAL_logo.png b/Geo/GeochatP-main/images/IVAL_logo.png new file mode 100644 index 0000000000000000000000000000000000000000..5cd65234cc600ddeb3cdf255477e0044ef8aef5d Binary files /dev/null and b/Geo/GeochatP-main/images/IVAL_logo.png differ diff --git a/Geo/GeochatP-main/images/MBZUAI_logo.png b/Geo/GeochatP-main/images/MBZUAI_logo.png new file mode 100644 index 0000000000000000000000000000000000000000..1aededc586c8cd0a21ad0ceaff0465861cc4205b Binary files /dev/null and b/Geo/GeochatP-main/images/MBZUAI_logo.png differ diff --git a/Geo/GeochatP-main/images/Oryx_logo.png b/Geo/GeochatP-main/images/Oryx_logo.png new file mode 100644 index 0000000000000000000000000000000000000000..745cbdf20a4e894a19e072c932f58e093ac89e15 Binary files /dev/null and b/Geo/GeochatP-main/images/Oryx_logo.png differ diff --git a/Geo/GeochatP-main/images/architecture.png b/Geo/GeochatP-main/images/architecture.png new file mode 100644 index 0000000000000000000000000000000000000000..4d00c49da47726d080a67e64ee508140543a55a1 --- /dev/null +++ b/Geo/GeochatP-main/images/architecture.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:9824f86304c64181844b789a5686b881daebdff2b662e7543087457600d9851d +size 2185039 diff --git a/Geo/GeochatP-main/images/dataset.png b/Geo/GeochatP-main/images/dataset.png new file mode 100644 index 0000000000000000000000000000000000000000..896c89fd022776b14d3149b11f69dca1cb6cc463 --- /dev/null +++ b/Geo/GeochatP-main/images/dataset.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:66049cf744404dd50e09173a373818dc9012cfce70ddc39dd9e4787c51606768 +size 2178146 diff --git a/Geo/GeochatP-main/images/examples.png b/Geo/GeochatP-main/images/examples.png new file mode 100644 index 0000000000000000000000000000000000000000..08bd092de500456882a13751e2eca11d1e992735 --- /dev/null +++ b/Geo/GeochatP-main/images/examples.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:f709711a4a87633b7af9e86597f48f679db73c04251c7e14027901c2cb98ecce +size 1710487 diff --git a/Geo/GeochatP-main/images/grounded.jpg b/Geo/GeochatP-main/images/grounded.jpg new file mode 100644 index 0000000000000000000000000000000000000000..7bcded35713beca2df24e5c76ea066e45bfad54f --- /dev/null +++ b/Geo/GeochatP-main/images/grounded.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:54da3de6b3bed90ecd6966075c265a6e77ef49cf5f362dd4f8d5a7b56dbad874 +size 1781213 diff --git a/Geo/GeochatP-main/images/iden.jpg b/Geo/GeochatP-main/images/iden.jpg new file mode 100644 index 0000000000000000000000000000000000000000..f601574cd30fcda3e7fd8953d372125bcd341b83 --- /dev/null +++ b/Geo/GeochatP-main/images/iden.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:bab022c94989c795ef4defcd1c103eace3b972b72e8c79a21e3f006f2a70338d +size 1074329 diff --git a/Geo/GeochatP-main/images/logo_geochat.png b/Geo/GeochatP-main/images/logo_geochat.png new file mode 100644 index 0000000000000000000000000000000000000000..77c95ae0b9b1921fe4f770f108c341fa029487ce --- /dev/null +++ b/Geo/GeochatP-main/images/logo_geochat.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:5ee933ef806ea2b5afc700ce144f766783d8bb9442834801a194993712f0025b +size 300174 diff --git a/Geo/GeochatP-main/images/overview2.png b/Geo/GeochatP-main/images/overview2.png new file mode 100644 index 0000000000000000000000000000000000000000..242fa7421986aee97551b28042efd15a07906ed2 --- /dev/null +++ b/Geo/GeochatP-main/images/overview2.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0919e70217d3ba2976a0899531444131666dde89180c58824b15c02111f653bb +size 1761151 diff --git a/Geo/GeochatP-main/images/ref1.jpg b/Geo/GeochatP-main/images/ref1.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b591fd4a7a477182fb09f40e425155a9d31458b9 --- /dev/null +++ b/Geo/GeochatP-main/images/ref1.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fd64d41ac2f9ed413e7341a86b109cec6b289d4b3b2fe93c484eb96d6b0d9db7 +size 1404643 diff --git a/Geo/GeochatP-main/images/ref_2.jpg b/Geo/GeochatP-main/images/ref_2.jpg new file mode 100644 index 0000000000000000000000000000000000000000..b609d784a2eb9fb6356c3adb4638d8dfb99e04cd --- /dev/null +++ b/Geo/GeochatP-main/images/ref_2.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:0397c3b2b152c940c42f0088a0edd6ce52a1537be1473e07ffb0cbc672992f0b +size 1750538 diff --git a/Geo/GeochatP-main/images/scene.jpg b/Geo/GeochatP-main/images/scene.jpg new file mode 100644 index 0000000000000000000000000000000000000000..91941c1794b2f124588567f8e9818a42cb0804ba --- /dev/null +++ b/Geo/GeochatP-main/images/scene.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:fb7340be3569d95ada355a8945b9af7f182cdc19d4f4e6e0c885bae6b7af3206 +size 1402791 diff --git a/Geo/GeochatP-main/images/teaser.png b/Geo/GeochatP-main/images/teaser.png new file mode 100644 index 0000000000000000000000000000000000000000..833cf9719e05b9e6e45336d2fd2781a27c936fbc --- /dev/null +++ b/Geo/GeochatP-main/images/teaser.png @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:deb585cd00a836d35ee927bb40220b4920696c63e678b24079951f08603116bf +size 644332 diff --git a/Geo/GeochatP-main/images/vqa.jpg b/Geo/GeochatP-main/images/vqa.jpg new file mode 100644 index 0000000000000000000000000000000000000000..73dd07aa5b3e21cdf3fc228a8f20410453b83030 --- /dev/null +++ b/Geo/GeochatP-main/images/vqa.jpg @@ -0,0 +1,3 @@ +version https://git-lfs.github.com/spec/v1 +oid sha256:cf2e8338cde2a57841463688c991787e78e9f3cd7a8e60f19f07864f61c6da8c +size 735179 diff --git a/Geo/GeochatP-main/playground/data/prompts/conversation/000_caps.txt b/Geo/GeochatP-main/playground/data/prompts/conversation/000_caps.txt new file mode 100644 index 0000000000000000000000000000000000000000..ac683b2a91e555b3045377a1a186a00d5cf29dac --- /dev/null +++ b/Geo/GeochatP-main/playground/data/prompts/conversation/000_caps.txt @@ -0,0 +1 @@ +This is a view from above of harbor. A white ship anchored at harbor at the left. A white ship anchored at harbor at the left. A white ship anchored at harbor at the left. A white ship anchored at harbor at the left. A white ship anchored at harbor at the left. 3 white ships anchored at harbor at the center. A white ship anchored at harbor at the center. A white ship anchored at harbor at the center. 2 silver ships anchored at harbor at the left. A mostly gray ship anchored at harbor at the left. A mostly gray ship anchored at harbor at the left. A mostly gray ship anchored at harbor at the bottom right. A mostly gray ship anchored at harbor at the bottom right. 3 mostly gray ships anchored at harbor at the bottom right. 2 mostly gray ships anchored at harbor at the bottom right. A mostly gray ship anchored at harbor at the left. A mostly gray ship anchored at harbor at the bottom right. 2 mostly gray ships anchored at harbor at the bottom. 2 mostly gray ships anchored at harbor at the bottom. 2 mostly gray ships anchored at harbor at the bottom. A mostly gray ship anchored at harbor at the bottom. 2 mostly gray ships anchored at harbor at the center. A mostly gray ship anchored at harbor at the left. 3 harbor close to each other at bottom. 3 tennis-court close to each other at top. 5 gray small-vehicle at the bottom. 1 gray large-vehicle at the bottom left. 3 white small-vehicle at the bottom left. 8 mostly black small-vehicle at the bottom right. 2 gray small-vehicle at the center. 1 harbor at the left. 1 gray small-vehicle at the left. 1 black small-vehicle at the right. 6 black small-vehicle at the top. 1 swimming-pool at the top. 2 white large-vehicle at the top left. 7 gray small-vehicle at the top left diff --git a/Geo/GeochatP-main/playground/data/prompts/conversation/000_conv.txt b/Geo/GeochatP-main/playground/data/prompts/conversation/000_conv.txt new file mode 100644 index 0000000000000000000000000000000000000000..f4952ec742f02a31930903b7b58835a87a871083 --- /dev/null +++ b/Geo/GeochatP-main/playground/data/prompts/conversation/000_conv.txt @@ -0,0 +1,53 @@ +Question: How many ships are anchored at the left of the harbor? +Answer: There are five white ships anchored at the left of the harbor. + +Question: What is the color of the ships anchored at the left of the harbor? +Answer: The ships anchored at the left of the harbor are white in color. + +Question: Can you describe the area at the center of the harbor in terms of anchored ships? +Answer: In the center of the harbor, there are three ships which are white in color and two silver ships anchored. + +Question: How many mostly gray ships are anchored at the bottom right of the harbor? +Answer: There are three mostly gray ships anchored at the bottom right of the harbor. + +Question: Whar is the size of the silver vehicles at the top left? +Answer: The silver vehicles at the top left are normal sized. + +Question: Are there any tennis courts close to each other in the image? +Answer: Yes, there are three tennis courts close to each other at the top of the image. + +Question: How many cars are at the bottom of the image? +Answer: There are five cars at the bottom of the image, which are grey in color. + +Question: Can you identify the location of a gray truck? +Answer: Yes, there is one gray truck at the bottom left of the image. + +Question: How many mostly black cars are at the bottom right of the image? +Answer: There are eight mostly black cars at the bottom right of the image. + +Question: Is there a swimming pool in the image, and if so, where is it located? +Answer: Yes, there is one swimming pool at the top of the image. + +Question: Can you describe the presence of white large vehicles in the image? +Answer: There are two white large vehicles at the top left of the image. + +Question: What can you infer about the grouping of three harbors close to each other at the bottom of the image? +Answer: The presence of three close-together harbors at the bottom suggests a cluster of maritime activity, potentially indicating a busy port area or waterfront location where ships dock. + +Question: What is the color of the mostly gray ships anchored at the bottom right of the harbor? +Answer: The mostly gray ships anchored at the bottom right of the harbor are gray. + +Question: Can you identify any mostly black cars in the image, and if so, how many are there? +Answer: Yes, there are eight mostly black cars in the image. + +Question: What is the relative size of the gray truck at the bottom left compared to the other vehicles? +Answer: The gray truck at the bottom left is larger in size compared to the other vehicles. + +Question: How many white large vehicles are there at the top left, and what can you tell about their relative size? +Answer: There are two white large vehicles at the top left, and they are larger in size compared to the smaller vehicles in the image. + +Question: Are the white ships anchored at the left of the harbor of the same size, or is there a size difference among them? +Answer: The white ships anchored at the left of the harbor appear to be of the same size. + +Question: Given the presence of various ships, vehicles, and facilities like tennis courts and a swimming pool, what type of scene or environment does this image likely depict? What potential activities or interactions can you infer from the arrangement of these elements? +Answer: This image likely represents an aerial view of a coastal area or harbor, characterized by a mix of maritime and recreational facilities. The numerous anchored ships suggest a bustling port, while the presence of tennis courts, a swimming pool, and various vehicles hints at a multifaceted waterfront space. It's possible that this area serves both commercial and recreational purposes, with ships being loaded or unloaded, and people engaging in leisure activities nearby. The variety of elements in this scene points to a dynamic and versatile waterfront environment. diff --git a/Geo/GeochatP-main/playground/data/prompts/conversation/001_caps.txt b/Geo/GeochatP-main/playground/data/prompts/conversation/001_caps.txt new file mode 100644 index 0000000000000000000000000000000000000000..40203035a4f23d92d25b9b1a90c98ca4dc518649 --- /dev/null +++ b/Geo/GeochatP-main/playground/data/prompts/conversation/001_caps.txt @@ -0,0 +1 @@ +This is a bird's-eye view of rectangular farmland. 1 airport at the center. diff --git a/Geo/GeochatP-main/playground/data/prompts/conversation/001_conv.txt b/Geo/GeochatP-main/playground/data/prompts/conversation/001_conv.txt new file mode 100644 index 0000000000000000000000000000000000000000..950792c8229aab7f908401e00f031e465c2ae06f --- /dev/null +++ b/Geo/GeochatP-main/playground/data/prompts/conversation/001_conv.txt @@ -0,0 +1,8 @@ +Question: Can you describe the layout and arrangement of the farmland in the image? Does it appear to be organized in a specific pattern? +Answer: The image depicts rectangular farmland, and the farmland appears to be organized in a rectangular pattern. + +Question: What does the description reveal about the size and scale of the airport at the center of the farmland? +Answer : The description mentions the presence of an airport at the center of the farmland, but it does not provide specific details about the size or scale of the airport. + +Question: Given that this image depicts rectangular farmland with an airport at the center, how might the presence of an airport in the midst of agricultural land symbolize the intersection of traditional practices and modern connectivity? What opportunities and challenges could arise from this unique juxtaposition in terms of both agricultural productivity and the region's economic development? +Answer: The airport amidst the farmland symbolizes the convergence of tradition and modernity. It offers opportunities for efficient agricultural exports and economic growth. However, it also raises challenges in preserving farmland. Ultimately, it represents the balance between local agriculture and global connectivity. diff --git a/Geo/GeochatP-main/playground/data/prompts/conversation/system_message.txt b/Geo/GeochatP-main/playground/data/prompts/conversation/system_message.txt new file mode 100644 index 0000000000000000000000000000000000000000..d48fdccf4d8d4b38a469ccbf37130b2ee410efb7 --- /dev/null +++ b/Geo/GeochatP-main/playground/data/prompts/conversation/system_message.txt @@ -0,0 +1,6 @@ +You are an AI visual assistant, and you are seeing a single image. What you see are provided with sentences, describing the same image you are looking at. The sentences describe various objects present in the scene, their colors, relative sizes as well as relative positions on the image. +Answer all questions as you are seeing the image. Design a conversation between you and a person asking about this photo. The answers should be in a tone that a visual AI assistant is seeing the image and answering the question. Ask diverse questions and give corresponding answers. Only give definite answers. +Include questions asking about the visual content of the image, including the object types, counting the objects, object actions, object locations, relative positions between objects, the size of objects, color of objects, etc. +(1) one can see the content in the image that the question asks about and can answer confidently. +(2) one can determine confidently from the image that it is not in the image. Do not ask any question that cannot be answered confidently. Also include complex questions that are relevant to the content in the image, for example, asking about background knowledge of the objects in the image, asking to discuss about events happening in the image, etc. Again, do not ask about uncertain details. +Provide detailed answers when answering complex questions. For example, give detailed examples or reasoning steps to make the content more convincing and well-organized. You can include multiple paragraphs if necessary. Do not output anything else other than the question answer pairs. diff --git a/Geo/GeochatP-main/pyproject.toml b/Geo/GeochatP-main/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..e0559092ad1e83d766bf7657b5cf043f3fa18cb0 --- /dev/null +++ b/Geo/GeochatP-main/pyproject.toml @@ -0,0 +1,39 @@ +[build-system] +requires = ["setuptools>=61.0"] +build-backend = "setuptools.build_meta" + +[project] +name = "geochat" +version = "1.1.1" +description = "Grounded VLM for Remote Sensing" +readme = "README.md" +requires-python = ">=3.8" +classifiers = [ + "Programming Language :: Python :: 3", + "License :: OSI Approved :: Apache Software License", +] +dependencies = [ + "einops", "fastapi", "gradio==3.35.2", "markdown2[all]", "numpy", + "requests", "sentencepiece", "tokenizers>=0.12.1", + "torch==2.0.1", "torchvision==0.15.2", "uvicorn", "wandb", + "shortuuid", "httpx==0.24.0", + "deepspeed==0.9.5", + "peft==0.4.0", + "transformers==4.31.0", + "accelerate==0.21.0", + "bitsandbytes==0.41.0", + "scikit-learn==1.2.2", + "sentencepiece==0.1.99", + "einops==0.6.1", "einops-exts==0.0.4", "timm==0.6.13", + "gradio_client==0.2.9" +] + +[project.urls] +"Homepage" = "https://github.com/mbzuai-oryx/GeoChat" +"Bug Tracker" = "https://github.com/mbzuai-oryx/GeoChat/issues" + +[tool.setuptools.packages.find] +exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"] + +[tool.wheel] +exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"] diff --git a/Geo/GeochatP-main/scripts/extract_mm_projector.py b/Geo/GeochatP-main/scripts/extract_mm_projector.py new file mode 100644 index 0000000000000000000000000000000000000000..45be31e896e9c087093bd9bcb6d355ec6dfd11ab --- /dev/null +++ b/Geo/GeochatP-main/scripts/extract_mm_projector.py @@ -0,0 +1,47 @@ +""" +This is just a utility that I use to extract the projector for quantized models. +It is NOT necessary at all to train, or run inference/serve demos. +Use this script ONLY if you fully understand its implications. +""" + + +import os +import argparse +import torch +import json +from collections import defaultdict + + +def parse_args(): + parser = argparse.ArgumentParser(description='Extract MMProjector weights') + parser.add_argument('--model-path', type=str, help='model folder') + parser.add_argument('--output', type=str, help='output file') + args = parser.parse_args() + return args + + +if __name__ == '__main__': + args = parse_args() + + keys_to_match = ['mm_projector'] + ckpt_to_key = defaultdict(list) + try: + model_indices = json.load(open(os.path.join(args.model_path, 'pytorch_model.bin.index.json'))) + for k, v in model_indices['weight_map'].items(): + if any(key_match in k for key_match in keys_to_match): + ckpt_to_key[v].append(k) + except FileNotFoundError: + # Smaller models or model checkpoints saved by DeepSpeed. + v = 'pytorch_model.bin' + for k in torch.load(os.path.join(args.model_path, v), map_location='cpu').keys(): + if any(key_match in k for key_match in keys_to_match): + ckpt_to_key[v].append(k) + + loaded_weights = {} + + for ckpt_name, weight_keys in ckpt_to_key.items(): + ckpt = torch.load(os.path.join(args.model_path, ckpt_name), map_location='cpu') + for k in weight_keys: + loaded_weights[k] = ckpt[k] + + torch.save(loaded_weights, args.output) diff --git a/Geo/GeochatP-main/scripts/finetune.sh b/Geo/GeochatP-main/scripts/finetune.sh new file mode 100644 index 0000000000000000000000000000000000000000..c14f770b481a548c978daca4b42fc0f74aeebe13 --- /dev/null +++ b/Geo/GeochatP-main/scripts/finetune.sh @@ -0,0 +1,48 @@ +#!/bin/bash + +# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! + +# Uncomment and set the following variables correspondingly to run this script: + +################## VICUNA ################## +# PROMPT_VERSION=v1 +# MODEL_VERSION="vicuna-v1-3-7b" +################## VICUNA ################## + +################## LLaMA-2 ################## +# PROMPT_VERSION="llava_llama_2" +# MODEL_VERSION="llama-2-7b-chat" +################## LLaMA-2 ################## + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --model_name_or_path ./checkpoints/$MODEL_VERSION \ + --version $PROMPT_VERSION \ + --data_path ./playground/data/llava_instruct_80k.json \ + --image_folder /path/to/coco/train2017 \ + --vision_tower openai/clip-vit-large-patch14 \ + --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune \ + --num_train_epochs 1 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/Geo/GeochatP-main/scripts/finetune_full_schedule.sh b/Geo/GeochatP-main/scripts/finetune_full_schedule.sh new file mode 100644 index 0000000000000000000000000000000000000000..59a0d4aa4d8f391c5b5e62452c4e9ef38934b4a9 --- /dev/null +++ b/Geo/GeochatP-main/scripts/finetune_full_schedule.sh @@ -0,0 +1,48 @@ +#!/bin/bash + +# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! + +# Uncomment and set the following variables correspondingly to run this script: + +################## VICUNA ################## +# PROMPT_VERSION=v1 +# MODEL_VERSION="vicuna-v1-3-7b" +################## VICUNA ################## + +################## LLaMA-2 ################## +# PROMPT_VERSION="llava_llama_2" +# MODEL_VERSION="llama-2-7b-chat" +################## LLaMA-2 ################## + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --model_name_or_path ./checkpoints/$MODEL_VERSION \ + --version $PROMPT_VERSION \ + --data_path ./playground/data/llava_instruct_158k.json \ + --image_folder /path/to/coco/train2017 \ + --vision_tower openai/clip-vit-large-patch14 \ + --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune \ + --num_train_epochs 3 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/Geo/GeochatP-main/scripts/finetune_lora.sh b/Geo/GeochatP-main/scripts/finetune_lora.sh new file mode 100644 index 0000000000000000000000000000000000000000..e987da57d3d9d60c4fe0adc5e61a211086f16c8e --- /dev/null +++ b/Geo/GeochatP-main/scripts/finetune_lora.sh @@ -0,0 +1,42 @@ +#!/bin/bash + +################## VICUNA ################## +PROMPT_VERSION=v1 +MODEL_VERSION="vicuna-v1.5-7b" +################## VICUNA ################## + + deepspeed --master_port=$((RANDOM + 10000)) --include localhost:gpu_ids geochat/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --lora_enable True \ + --model_name_or_path path/to/base/llavav1.5-7b \ + --version $PROMPT_VERSION \ + --data_path path/to/GeoChat_Instruct.json \ + --image_folder /share/softwares/kartik/final_images_llava \ + --vision_tower openai/clip-vit-large-patch14-336 \ + --mm_projector_type mlp2x_gelu \ + --pretrain_mm_mlp_adapter path/to/llava-v1.5-mlp2x-336px-pretrain-vicuna-7b-v1.5/mm_projector.bin \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --image_aspect_ratio pad \ + --bf16 True \ + --output_dir path/to/checkpoints_dir \ + --num_train_epochs 1 \ + --per_device_train_batch_size 32 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "epoch" \ + --save_steps 7000 \ + --save_total_limit 1 \ + --learning_rate 2e-4 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --lazy_preprocess True \ + --dataloader_num_workers 16 \ + --report_to wandb diff --git a/Geo/GeochatP-main/scripts/finetune_qlora.sh b/Geo/GeochatP-main/scripts/finetune_qlora.sh new file mode 100644 index 0000000000000000000000000000000000000000..c2ed4c030cb7a3fff79f47a8e681f4df7c989100 --- /dev/null +++ b/Geo/GeochatP-main/scripts/finetune_qlora.sh @@ -0,0 +1,50 @@ +#!/bin/bash + +# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! + +# Uncomment and set the following variables correspondingly to run this script: + +################## VICUNA ################## +# PROMPT_VERSION=v1 +# MODEL_VERSION="vicuna-v1-3-7b" +################## VICUNA ################## + +################## LLaMA-2 ################## +# PROMPT_VERSION="llava_llama_2" +# MODEL_VERSION="llama-2-7b-chat" +################## LLaMA-2 ################## + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --lora_enable True \ + --bits 4 \ + --model_name_or_path ./checkpoints/$MODEL_VERSION \ + --version $PROMPT_VERSION \ + --data_path ./playground/data/llava_instruct_80k.json \ + --image_folder /path/to/coco/train2017 \ + --vision_tower openai/clip-vit-large-patch14 \ + --pretrain_mm_mlp_adapter ./checkpoints/llava-$MODEL_VERSION-pretrain/mm_projector.bin \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-$MODEL_VERSION-finetune_lora \ + --num_train_epochs 1 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --lazy_preprocess True \ + --dataloader_num_workers 4 \ + --report_to wandb diff --git a/Geo/GeochatP-main/scripts/finetune_sqa.sh b/Geo/GeochatP-main/scripts/finetune_sqa.sh new file mode 100644 index 0000000000000000000000000000000000000000..3ed50288c31c118cab22312ad02a559d45725490 --- /dev/null +++ b/Geo/GeochatP-main/scripts/finetune_sqa.sh @@ -0,0 +1,36 @@ +#!/bin/bash + +# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --model_name_or_path lmsys/vicuna-13b-v1.3 \ + --version $PROMPT_VERSION \ + --data_path /Data/ScienceQA/data/scienceqa/llava_train_QCM-LEA.json \ + --image_folder /Data/ScienceQA/data/scienceqa/images/train \ + --vision_tower openai/clip-vit-large-patch14 \ + --pretrain_mm_mlp_adapter ./checkpoints/huggingface/liuhaotian/llava-pretrain-vicuna-13b-v1.3/mm_projector.bin \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-vicuna-13b-v1.3-pretrain_lcs558k_plain-ScienceQA_QCM_LEA-12e \ + --num_train_epochs 12 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 50000 \ + --save_total_limit 1 \ + --learning_rate 2e-5 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/Geo/GeochatP-main/scripts/merge_lora_weights.py b/Geo/GeochatP-main/scripts/merge_lora_weights.py new file mode 100644 index 0000000000000000000000000000000000000000..3b39cc7beb12301379af7daebbb5553fa92093ea --- /dev/null +++ b/Geo/GeochatP-main/scripts/merge_lora_weights.py @@ -0,0 +1,22 @@ +import argparse +from llava.model.builder import load_pretrained_model +from llava.mm_utils import get_model_name_from_path + + +def merge_lora(args): + model_name = get_model_name_from_path(args.model_path) + tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, device_map='cpu') + + model.save_pretrained(args.save_model_path) + tokenizer.save_pretrained(args.save_model_path) + + +if __name__ == "__main__": + parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, required=True) + parser.add_argument("--model-base", type=str, required=True) + parser.add_argument("--save-model-path", type=str, required=True) + + args = parser.parse_args() + + merge_lora(args) diff --git a/Geo/GeochatP-main/scripts/pretrain.sh b/Geo/GeochatP-main/scripts/pretrain.sh new file mode 100644 index 0000000000000000000000000000000000000000..83f263dd570e447b3b009542d26688ce936436af --- /dev/null +++ b/Geo/GeochatP-main/scripts/pretrain.sh @@ -0,0 +1,46 @@ +#!/bin/bash + +# IMPORTANT: this is the training script for the original LLaVA, NOT FOR LLaVA V1.5! + +# Uncomment and set the following variables correspondingly to run this script: + +# MODEL_VERSION=vicuna-v1-3-7b +# MODEL_VERSION=llama-2-7b-chat + +########### DO NOT CHANGE ########### +########### USE THIS FOR BOTH ########### +PROMPT_VERSION=plain +########### DO NOT CHANGE ########### + +deepspeed llava/train/train_mem.py \ + --deepspeed ./scripts/zero2.json \ + --model_name_or_path ./checkpoints/$MODEL_VERSION \ + --version $PROMPT_VERSION \ + --data_path /path/to/pretrain_data.json \ + --image_folder /path/to/images \ + --vision_tower openai/clip-vit-large-patch14 \ + --tune_mm_mlp_adapter True \ + --mm_vision_select_layer -2 \ + --mm_use_im_start_end False \ + --mm_use_im_patch_token False \ + --bf16 True \ + --output_dir ./checkpoints/llava-$MODEL_VERSION-pretrain \ + --num_train_epochs 1 \ + --per_device_train_batch_size 16 \ + --per_device_eval_batch_size 4 \ + --gradient_accumulation_steps 1 \ + --evaluation_strategy "no" \ + --save_strategy "steps" \ + --save_steps 24000 \ + --save_total_limit 1 \ + --learning_rate 2e-3 \ + --weight_decay 0. \ + --warmup_ratio 0.03 \ + --lr_scheduler_type "cosine" \ + --logging_steps 1 \ + --tf32 True \ + --model_max_length 2048 \ + --gradient_checkpointing True \ + --dataloader_num_workers 4 \ + --lazy_preprocess True \ + --report_to wandb diff --git a/Geo/GeochatP-main/scripts/zero2.json b/Geo/GeochatP-main/scripts/zero2.json new file mode 100644 index 0000000000000000000000000000000000000000..c95ebefe07b7d8d9fd0936a014679d07102cc270 --- /dev/null +++ b/Geo/GeochatP-main/scripts/zero2.json @@ -0,0 +1,23 @@ +{ + "fp16": { + "enabled": "auto", + "loss_scale": 0, + "loss_scale_window": 1000, + "initial_scale_power": 16, + "hysteresis": 2, + "min_loss_scale": 1 + }, + "bf16": { + "enabled": "auto" + }, + "train_micro_batch_size_per_gpu": "auto", + "train_batch_size": "auto", + "gradient_accumulation_steps": "auto", + "zero_optimization": { + "stage": 2, + "overlap_comm": true, + "contiguous_gradients": true, + "sub_group_size": 1e9, + "reduce_bucket_size": "auto" + } +} \ No newline at end of file diff --git a/Geo/GeochatP-main/scripts/zero3.json b/Geo/GeochatP-main/scripts/zero3.json new file mode 100644 index 0000000000000000000000000000000000000000..6917317af62da757ca759a92b326ddfa65b203cc --- /dev/null +++ b/Geo/GeochatP-main/scripts/zero3.json @@ -0,0 +1,28 @@ +{ + "fp16": { + "enabled": "auto", + "loss_scale": 0, + "loss_scale_window": 1000, + "initial_scale_power": 16, + "hysteresis": 2, + "min_loss_scale": 1 + }, + "bf16": { + "enabled": "auto" + }, + "train_micro_batch_size_per_gpu": "auto", + "train_batch_size": "auto", + "gradient_accumulation_steps": "auto", + "zero_optimization": { + "stage": 3, + "overlap_comm": true, + "contiguous_gradients": true, + "sub_group_size": 1e9, + "reduce_bucket_size": "auto", + "stage3_prefetch_bucket_size": "auto", + "stage3_param_persistence_threshold": "auto", + "stage3_max_live_parameters": 1e9, + "stage3_max_reuse_distance": 1e9, + "stage3_gather_16bit_weights_on_model_save": true + } +} \ No newline at end of file diff --git a/Geo/GeochatP-main/scripts/zero3_offload.json b/Geo/GeochatP-main/scripts/zero3_offload.json new file mode 100644 index 0000000000000000000000000000000000000000..e0a54c2c2bc10f76458c42a43de0970a9251759f --- /dev/null +++ b/Geo/GeochatP-main/scripts/zero3_offload.json @@ -0,0 +1,56 @@ +{ + "fp16": { + "enabled": "auto", + "loss_scale": 0, + "loss_scale_window": 1000, + "initial_scale_power": 16, + "hysteresis": 2, + "min_loss_scale": 1 + }, + "bf16": { + "enabled": "auto" + }, + "optimizer": { + "type": "AdamW", + "params": { + "lr": "auto", + "betas": "auto", + "eps": "auto", + "weight_decay": "auto" + } + }, + "scheduler": { + "type": "WarmupLR", + "params": { + "warmup_min_lr": "auto", + "warmup_max_lr": "auto", + "warmup_num_steps": "auto" + } + }, + "zero_optimization": { + "stage": 3, + "offload_optimizer": { + "device": "cpu", + "pin_memory": true + }, + "offload_param": { + "device": "cpu", + "pin_memory": true + }, + "overlap_comm": true, + "contiguous_gradients": true, + "sub_group_size": 1e9, + "reduce_bucket_size": "auto", + "stage3_prefetch_bucket_size": "auto", + "stage3_param_persistence_threshold": "auto", + "stage3_max_live_parameters": 1e9, + "stage3_max_reuse_distance": 1e9, + "gather_16bit_weights_on_model_save": true + }, + "gradient_accumulation_steps": "auto", + "gradient_clipping": "auto", + "train_batch_size": "auto", + "train_micro_batch_size_per_gpu": "auto", + "steps_per_print": 1e5, + "wall_clock_breakdown": false +} \ No newline at end of file diff --git a/README.md b/README.md index f4a6a5663124c7ccb3dc2d2d3562d081f515a1c7..0ef84f6fa92841d37de2f35fdaa5850806d6c8ab 100644 --- a/README.md +++ b/README.md @@ -1,13 +1,227 @@ +# GeoChat : Grounded Large Vision-Language Model for Remote Sensing [CVPR-2024] +

+ Oryx Video-ChatGPT +

+ +#### [Kartik Kuckreja](https://www.linkedin.com/in/kartik-kuckreja-930531221/)\*, [Muhammad Sohail Danish](https://www.linkedin.com/in/muhammad-sohail-danish/)\*, [Muzammal Naseer](https://muzammal-naseer.com/), [Abhijit Das](https://sites.google.com/site/dasabhijit2048/home), [Salman Khan](https://salman-h-khan.github.io/) and [Fahad Khan](https://sites.google.com/view/fahadkhans/home) +\* Equally contributing first authors + +#### **Mohamed bin Zayed University of AI, Birla Institute of Technology & Science, Australian National University, Linkoping University** + +[![Website](https://img.shields.io/badge/Project-Website-87CEEB)](https://mbzuai-oryx.github.io/GeoChat) +[![paper](https://img.shields.io/badge/arXiv-Paper-.svg)](https://arxiv.org/abs/2311.15826) +[![video](https://img.shields.io/badge/Video-Presentation-F9D371)](https://youtu.be/KOKtkkKpNDk) + --- -title: GeochatP -emoji: 📉 -colorFrom: purple -colorTo: indigo -sdk: gradio -sdk_version: 5.22.0 -app_file: app.py -pinned: false -short_description: GeochatP + +## 📢 Latest Updates +- Supplementary material for the accepted paper is available here: [Supplementary](https://github.com/mbzuai-oryx/GeoChat/blob/main/docs/geochat_supp.pdf). +- **Feb-28-24**: We open source the code, model, dataset, and evaluation scripts. +- **Feb-27-24**: GeoChat has been accepted to **CVPR-24** 🎉. +- **Nov-28-23**: GeoChat paper is released [arxiv link](https://arxiv.org/abs/2311.15826). 🔥🔥 --- -Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference + + +## Overview + +GeoChat is the first grounded Large Vision Language Model, specifically tailored to Remote Sensing(RS) scenarios. Unlike general-domain models, GeoChat excels in handling high-resolution RS imagery, employing region-level reasoning for comprehensive scene interpretation. Leveraging a newly created RS multimodal dataset, GeoChat is fine-tuned using the LLaVA-1.5 architecture. This results in robust zero-shot performance across various RS tasks, including image and region captioning, visual question answering, scene classification, visually grounded conversations, and referring object detection. + +--- +## Contents +- [Install](#install) +- [Model Zoo](https://github.com/mbzuai-oryx/GeoChat/blob/main/docs/MODEL_ZOO.md) +- [Dataset](https://huggingface.co/datasets/MBZUAI/GeoChat_Instruct/blob/main/GeoChat_Instruct.json) +- [Train](#train) +- [Evaluation](#evaluation) + +## Install + +1. Clone this repository and navigate to GeoChat folder +```bash +git clone https://github.com/mbzuai-oryx/GeoChat.git +cd GeoChat +``` + +2. Install Package +```Shell +conda create -n geochat python=3.10 -y +conda activate geochat +pip install --upgrade pip # enable PEP 660 support +pip install -e . +``` + +3. Install additional packages for training cases +``` +pip install ninja +pip install flash-attn --no-build-isolation +``` + +### Upgrade to latest code base + +```Shell +git pull +pip uninstall transformers +pip install -e . +``` + +## GeoChat Weights and Demo +Please check out our [Model Zoo](https://github.com/mbzuai-oryx/GeoChat/blob/main/docs/MODEL_ZOO.md) for all public GeoChat checkpoints, and check [LoRA.md](https://github.com/mbzuai-oryx/GeoChat/blob/main/docs/LoRA.md) for instructions on how to run the demo and training. + +## Train + +GeoChat training consists of visual instruction tuning using GeoChat_Instruct Dataset: 318k Vicuna-generated multimodal instruction-following data, finetuned over the pretrained weights of LlaVA-v1.5. + +We train GeoChat on 3 A100 GPUs with 40GB memory. To train on fewer GPUs, you can reduce the `per_device_train_batch_size` and increase the `gradient_accumulation_steps` accordingly. Always keep the global batch size the same: `per_device_train_batch_size` x `gradient_accumulation_steps` x `num_gpus`. + +### Hyperparameters +We use a similar set of hyperparameters as Vicuna in finetuning. Both hyperparameters used in pretraining and finetuning are provided below. + +| Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay | +| --- | ---: | ---: | ---: | ---: | ---: | +| GeoChat-7B | 144 | 2e-5 | 1 | 2048 | 0 | + +### Pretrain (feature alignment) + +We use the pretrained projector from LLaVAv1.5, which is trained on 558K subset of the LAION-CC-SBU dataset with BLIP captions. It takes around 3.5 hours for LLaVA-v1.5-7B. + +- `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector. +- `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px. + +### Visual Instruction Tuning + +1. Prepare data + +Please download the annotation of the final mixture of our instruction tuning data [GeoChat_Instruct.json](https://huggingface.co/datasets/MBZUAI/GeoChat_Instruct/blob/main/GeoChat_Instruct.json), and download the split image zips from the [hugging face](https://huggingface.co/datasets/MBZUAI/GeoChat_Instruct). Save the multiple image zips in a single folder and run the following command to merge them: +```Shell +cat images_parta* > images.zip +``` +Unzip the images.zip file to a folder and give the folder's path in [finetune_lora.sh](https://github.com/mbzuai-oryx/GeoChat/blob/main/scripts/finetune_lora.sh). + +2. Start training! + +Visual instruction tuning takes more time due to the increased resolution of CLIP to 504X504. It takes around ~25 hours to finetune GeoChat-7B on 3x A100 (40G). + +Training script with DeepSpeed ZeRO-3: [`finetune_lora.sh`](https://github.com/mbzuai-oryx/GeoChat/blob/main/scripts/finetune_lora.sh). + +Options to note: + +- `--mm_projector_type mlp2x_gelu`: the two-layer MLP vision-language connector. +- `--vision_tower openai/clip-vit-large-patch14-336`: CLIP ViT-L/14 336px. +- `--image_aspect_ratio pad`: this pads the non-square images to square, instead of cropping them; it slightly reduces hallucination. +- `--group_by_modality_length True`: this should only be used when your instruction tuning dataset contains both language (e.g. ShareGPT) and multimodal (e.g. LLaVA-Instruct). +- +## Evaluation + +We evaluate GeoChat on a diverse set of 7 benchmarks. To ensure the reproducibility, we evaluate the models with greedy decoding. We do not evaluate using beam search to make the inference process consistent with the chat demo of real-time outputs. +See [Evaluation.md](https://github.com/mbzuai-oryx/GeoChat/blob/main/docs/Evaluation.md). + +## 🏆 Contributions + +- **RS multimodal instruction following dataset.** We present a novel data generation pipeline, to leverage existing object detection dataset to create short descriptions of the images, followed by using Vicuna-v1.5 to create conversations using the generated text alone. Further, we add visual question-answering and scene classification abilities + using their corresponding datasets. This results in a total of 318k instruction pairs for RS domain. +- **GeoChat.** Leveraging our dataset, we finetune LLaVA-1.5 to create the remote sensing-domain vision-language model - GeoChat. Our LoRA fine-tuning is efficient and avoids forgetting the necessary context embedded in fully-tuned LLaVA model, whose MLP projection is trained to align images into the word embedding space of the LLM (Vicuna-v1.5). This allows GeoChat to retain the conversation and instruction following abilities of LLaVA and extend its domain-knowledge to remote sensing tasks. + +- **Evaluation Benchmark.** We also address the lack of evaluation benchmarks to assess the capability of existing VLMs on remote-sensing conversations. To this end, we setup evaluation protocols for conversation grounding in RS, as well as a setup a suite of tasks to allow comparisons with future efforts in this direction. We show various supervised as well as zero-shot evaluations for different remote sensing tasks, including image captioning, visual question answering and scene classification to demonstrate the generalisability of GeoChat conversational VLM. + +--- +## 👁️💬 GeoChat : Grounded Large Vision-Language Model for Remote Sensing + +GeoChat can accomplish multiple tasks for remote-sensing (RS) image comprehension in a unified framework. Given suitable task tokens and user queries, the model can generate visually grounded responses (text with corresponding object locations - shown on top), visual question answering on images and regions (top left and bottom right, respectively) as well as scene classification (top right) and normal natural language conversations (bottom). This makes it the first RS VLM with grounding capability. + +

+ GeoChat Overview +

+ +--- + +## 🛰️ GeoChat : Architecture + +An overview of GeoChat - the first grounded large vision-language model for remote sensing. Given an image input together with a user query, a visual backbone is first used to encode patch-level tokens at a higher resolution via interpolating positional encodings. A multi-layer perceptron (MLP) is used to adapt vision-tokens to language space suitable for input to a Large Language Model (Vicuna 1.5). Besides visual inputs, region locations can also be input to the model together with task-specific prompts that specify the desired task required by the user. Given this context, the LLM can generate natural language responses interleaved with corresponding object locations. GeoChat can perform multiple tasks as shown on top e.g., scene classification, image/region captioning, VQA and grounded conversations. + +

+ GeoChat Architectural +

+ +--- + +## 🔍 RS Multimodal Instruction Dataset + +Types of annotations available in the GeoChat instruction-set. For a given RS image, we obtain object attribute and relationship information, referring expressions and region captions along with their corresponding region annotations (shown over the image). This structured information is used to create the rich instruction-set with a total of 318k image-instruction pairs. + +

+ Dataset Annotation Pipeline +

+ + + +## 🤖 Qualitative results of GeoChat + +Qualitative results of GeoChat. (left-right) Results are shown on grounding, referring object detection, and disaster/damage detection. The user can provide task-specific tokens (e.g., [grounding]) to shape model responses according to the desired behavior. The model can generate textual responses (right), only visual grounding (center) and both text and object groundings interleaved together (left). The model can also specify object types, object counts, object attributes and object relationships. +

+ Results_GCG +

+ +--- + +## 🤖 Visual Question Answering +Qualitative examples for Visual Question Answering tasks. GeoChat is able to hold multi-turn conversations, based on various types of questions, including presence, count, complex comparisons and so on. It is able to detect objects and hold conversations against low resolution images as well. +

+ Visual Question Answering +

+ +--- + +## 🤖 Scene Classification +Qualitative examples for scene classification. We give the model all the classes from the dataset and ask to choose only one. +

+ Visual Question Answering +

+ +--- + +## 🤖 Grounded Description +When asked to describe the image with the special token '[grounding]', GeoChat outputs both the description of the image as well as the bounding boxes for all the objects detected. +

+ Grounded Description +

+ +--- + +## 🤖 Referring Expression +When asked about an object as a referred expression, GeoChat is able to locate it and draw rotated bounding boxes around it correspondingly. +

+ Referring Expression +

+

+ Referring Expression +

+ +--- + +## 🤖 Region Caption +Qualitative examples for region-based captioning. Given a bounding box, GeoChat is able to provide brief descriptions about the area or the object covered by the bounding box. +

+ Region Caption +

+ +--- + +## 📜 Citation +```bibtex + @article{kuckreja2023geochat, + title={GeoChat: Grounded Large Vision-Language Model for Remote Sensing}, + author={Kuckreja, Kartik and Danish, Muhammad S. and Naseer, Muzammal and Das, Abhijit and Khan, Salman and Khan, Fahad S.}, + journal={The IEEE/CVF Conference on Computer Vision and Pattern Recognition}, + year={2024} + } +``` +## 🙏 Acknowledgement +We are thankful to LLaVA and Vicuna for releasing their models and code as open-source contributions. + +--- +[](https://www.ival-mbzuai.com) +[](https://github.com/mbzuai-oryx) +[](https://mbzuai.ac.ae) +Fixing Hugging Face deployment + \ No newline at end of file diff --git a/app.py b/app.py new file mode 100644 index 0000000000000000000000000000000000000000..a3fcaa009bbd66a363f6d7c926a1c1300e57daac --- /dev/null +++ b/app.py @@ -0,0 +1,35 @@ +import torch +import gradio as gr +from torchvision import transforms +from PIL import Image + +# Load model +class MyModel(torch.nn.Module): + def __init__(self): + super().__init__() + # Define layers here + + def forward(self, x): + # Forward pass + return x + +model = MyModel() +model.load_state_dict(torch.load("model.pth")) +model.eval() + +# Define image preprocessing +transform = transforms.Compose([ + transforms.Resize((224, 224)), + transforms.ToTensor(), +]) + +# Define prediction function +def predict(image): + image = transform(image).unsqueeze(0) # Add batch dimension + with torch.no_grad(): + output = model(image) + return output.numpy().tolist() + +# Create Gradio interface +iface = gr.Interface(fn=predict, inputs=gr.Image(), outputs="json") +iface.launch() diff --git a/geochat_demo.py b/geochat_demo.py new file mode 100644 index 0000000000000000000000000000000000000000..939ef3444933f8b4e934fcdd5f4e9cc128acccf7 --- /dev/null +++ b/geochat_demo.py @@ -0,0 +1,706 @@ +import argparse +import os +import random +from collections import defaultdict + +import cv2 +import re +import math +import numpy as np +from PIL import Image +import torch +import html +import gradio as gr + +import torchvision.transforms as T +import torch.backends.cudnn as cudnn + +from geochat.conversation import conv_templates, Chat +from geochat.model.builder import load_pretrained_model +from geochat.mm_utils import get_model_name_from_path + + +def parse_args(): + parser = argparse.ArgumentParser(description="Demo") + # parser = argparse.ArgumentParser() + parser.add_argument("--model-path", type=str, default="facebook/opt-350m") + parser.add_argument("--model-base", type=str, default=None) + parser.add_argument("--gpu-id", type=str,default=0) + parser.add_argument("--device", type=str, default="cuda") + parser.add_argument("--conv-mode", type=str, default=None) + parser.add_argument("--max-new-tokens", type=int, default=300) + parser.add_argument("--load-8bit", action="store_true") + parser.add_argument("--load-4bit", action="store_true") + parser.add_argument("--debug", action="store_true") + parser.add_argument("--image-aspect-ratio", type=str, default='pad') + # args = parser.parse_args() + args = parser.parse_args() + return args + + +random.seed(42) +np.random.seed(42) +torch.manual_seed(42) + +cudnn.benchmark = False +cudnn.deterministic = True + +print('Initializing Chat') +args = parse_args() +# cfg = Config(args) + +model_name = get_model_name_from_path(args.model_path) +tokenizer, model, image_processor, context_len = load_pretrained_model(args.model_path, args.model_base, model_name, args.load_8bit, args.load_4bit, device=args.device) + +device = 'cuda:{}'.format(args.gpu_id) + +# model_config = cfg.model_cfg +# model_config.device_8bit = args.gpu_id +# model_cls = registry.get_model_class(model_config.arch) +# model = model_cls.from_config(model_config).to(device) +bounding_box_size = 100 + +# vis_processor_cfg = cfg.datasets_cfg.cc_sbu_align.vis_processor.train +# vis_processor = registry.get_processor_class(vis_processor_cfg.name).from_config(vis_processor_cfg) + +model = model.eval() + +CONV_VISION = conv_templates['llava_v1'].copy() + +def bbox_and_angle_to_polygon(x1, y1, x2, y2, a): + # Calculate center coordinates + x_ctr = (x1 + x2) / 2 + y_ctr = (y1 + y2) / 2 + + # Calculate width and height + w = abs(x2 - x1) + h = abs(y2 - y1) + + # Calculate the angle in radians + angle_rad = math.radians(a) + + # Calculate coordinates of the four corners of the rotated bounding box + cos_a = math.cos(angle_rad) + sin_a = math.sin(angle_rad) + + x1_rot = cos_a * (-w / 2) - sin_a * (-h / 2) + x_ctr + y1_rot = sin_a * (-w / 2) + cos_a * (-h / 2) + y_ctr + + x2_rot = cos_a * (w / 2) - sin_a * (-h / 2) + x_ctr + y2_rot = sin_a * (w / 2) + cos_a * (-h / 2) + y_ctr + + x3_rot = cos_a * (w / 2) - sin_a * (h / 2) + x_ctr + y3_rot = sin_a * (w / 2) + cos_a * (h / 2) + y_ctr + + x4_rot = cos_a * (-w / 2) - sin_a * (h / 2) + x_ctr + y4_rot = sin_a * (-w / 2) + cos_a * (h / 2) + y_ctr + + # Return the polygon coordinates + polygon_coords = np.array((x1_rot, y1_rot, x2_rot, y2_rot, x3_rot, y3_rot, x4_rot, y4_rot)) + + return polygon_coords + +def rotate_bbox(top_right, bottom_left, angle_degrees): + # Convert angle to radians + angle_radians = np.radians(angle_degrees) + + # Calculate the center of the rectangle + center = ((top_right[0] + bottom_left[0]) / 2, (top_right[1] + bottom_left[1]) / 2) + + # Calculate the width and height of the rectangle + width = top_right[0] - bottom_left[0] + height = top_right[1] - bottom_left[1] + + # Create a rotation matrix + rotation_matrix = cv2.getRotationMatrix2D(center, angle_degrees, 1) + + # Create an array of the rectangle corners + rectangle_points = np.array([[bottom_left[0], bottom_left[1]], + [top_right[0], bottom_left[1]], + [top_right[0], top_right[1]], + [bottom_left[0], top_right[1]]], dtype=np.float32) + + # Rotate the rectangle points + rotated_rectangle = cv2.transform(np.array([rectangle_points]), rotation_matrix)[0] + + return rotated_rectangle +def extract_substrings(string): + # first check if there is no-finished bracket + index = string.rfind('}') + if index != -1: + string = string[:index + 1] + + pattern = r'

(.*?)\}(?!<)' + matches = re.findall(pattern, string) + substrings = [match for match in matches] + + return substrings + + +def is_overlapping(rect1, rect2): + x1, y1, x2, y2 = rect1 + x3, y3, x4, y4 = rect2 + return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4) + + +def computeIoU(bbox1, bbox2): + x1, y1, x2, y2 = bbox1 + x3, y3, x4, y4 = bbox2 + intersection_x1 = max(x1, x3) + intersection_y1 = max(y1, y3) + intersection_x2 = min(x2, x4) + intersection_y2 = min(y2, y4) + intersection_area = max(0, intersection_x2 - intersection_x1 + 1) * max(0, intersection_y2 - intersection_y1 + 1) + bbox1_area = (x2 - x1 + 1) * (y2 - y1 + 1) + bbox2_area = (x4 - x3 + 1) * (y4 - y3 + 1) + union_area = bbox1_area + bbox2_area - intersection_area + iou = intersection_area / union_area + return iou + + +def save_tmp_img(visual_img): + file_name = "".join([str(random.randint(0, 9)) for _ in range(5)]) + ".jpg" + file_path = "/tmp/gradio" + file_name + visual_img.save(file_path) + return file_path + + +def mask2bbox(mask): + if mask is None: + return '' + mask = mask.resize([100, 100], resample=Image.NEAREST) + mask = np.array(mask)[:, :, 0] + + rows = np.any(mask, axis=1) + cols = np.any(mask, axis=0) + + if rows.sum(): + # Get the top, bottom, left, and right boundaries + rmin, rmax = np.where(rows)[0][[0, -1]] + cmin, cmax = np.where(cols)[0][[0, -1]] + bbox = '{{<{}><{}><{}><{}>}}'.format(cmin, rmin, cmax, rmax) + else: + bbox = '' + + return bbox + + +def escape_markdown(text): + # List of Markdown special characters that need to be escaped + md_chars = ['<', '>'] + + # Escape each special character + for char in md_chars: + text = text.replace(char, '\\' + char) + + return text + + +def reverse_escape(text): + md_chars = ['\\<', '\\>'] + + for char in md_chars: + text = text.replace(char, char[1:]) + + return text + + +colors = [ + (255, 0, 0), + (0, 255, 0), + (0, 0, 255), + (210, 210, 0), + (255, 0, 255), + (0, 255, 255), + (114, 128, 250), + (0, 165, 255), + (0, 128, 0), + (144, 238, 144), + (238, 238, 175), + (255, 191, 0), + (0, 128, 0), + (226, 43, 138), + (255, 0, 255), + (0, 215, 255), +] + +color_map = { + f"{color_id}": f"#{hex(color[2])[2:].zfill(2)}{hex(color[1])[2:].zfill(2)}{hex(color[0])[2:].zfill(2)}" for + color_id, color in enumerate(colors) +} + +used_colors = colors + + +def visualize_all_bbox_together(image, generation): + if image is None: + return None, '' + + generation = html.unescape(generation) + + image_width, image_height = image.size + image = image.resize([500, int(500 / image_width * image_height)]) + image_width, image_height = image.size + + string_list = extract_substrings(generation) + if string_list: # it is grounding or detection + mode = 'all' + entities = defaultdict(list) + i = 0 + j = 0 + for string in string_list: + try: + obj, string = string.split('

') + except ValueError: + print('wrong string: ', string) + continue + if "}{" in string: + string=string.replace("}{","}{") + bbox_list = string.split('') + flag = False + for bbox_string in bbox_list: + integers = re.findall(r'-?\d+', bbox_string) + if len(integers)==4: + angle=0 + else: + angle=integers[4] + integers=integers[:-1] + + if len(integers) == 4: + x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3]) + left = x0 / bounding_box_size * image_width + bottom = y0 / bounding_box_size * image_height + right = x1 / bounding_box_size * image_width + top = y1 / bounding_box_size * image_height + + entities[obj].append([left, bottom, right, top,angle]) + + j += 1 + flag = True + if flag: + i += 1 + else: + integers = re.findall(r'-?\d+', generation) + # if len(integers)==4: + angle=0 + # else: + # angle=integers[4] + integers=integers[:-1] + if len(integers) == 4: # it is refer + mode = 'single' + + entities = list() + x0, y0, x1, y1 = int(integers[0]), int(integers[1]), int(integers[2]), int(integers[3]) + left = x0 / bounding_box_size * image_width + bottom = y0 / bounding_box_size * image_height + right = x1 / bounding_box_size * image_width + top = y1 / bounding_box_size * image_height + entities.append([left, bottom, right, top,angle]) + else: + # don't detect any valid bbox to visualize + return None, '' + + if len(entities) == 0: + return None, '' + + if isinstance(image, Image.Image): + image_h = image.height + image_w = image.width + image = np.array(image) + + elif isinstance(image, str): + if os.path.exists(image): + pil_img = Image.open(image).convert("RGB") + image = np.array(pil_img)[:, :, [2, 1, 0]] + image_h = pil_img.height + image_w = pil_img.width + else: + raise ValueError(f"invaild image path, {image}") + elif isinstance(image, torch.Tensor): + + image_tensor = image.cpu() + reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None] + reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None] + image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean + pil_img = T.ToPILImage()(image_tensor) + image_h = pil_img.height + image_w = pil_img.width + image = np.array(pil_img)[:, :, [2, 1, 0]] + else: + raise ValueError(f"invalid image format, {type(image)} for {image}") + + indices = list(range(len(entities))) + + new_image = image.copy() + + previous_bboxes = [] + # size of text + text_size = 0.4 + # thickness of text + text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1)) + box_line = 2 + (c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line) + base_height = int(text_height * 0.675) + text_offset_original = text_height - base_height + text_spaces = 2 + + # num_bboxes = sum(len(x[-1]) for x in entities) + used_colors = colors # random.sample(colors, k=num_bboxes) + + color_id = -1 + for entity_idx, entity_name in enumerate(entities): + if mode == 'single' or mode == 'identify': + bboxes = entity_name + bboxes = [bboxes] + else: + bboxes = entities[entity_name] + color_id += 1 + for bbox_id, (x1_norm, y1_norm, x2_norm, y2_norm,angle) in enumerate(bboxes): + skip_flag = False + orig_x1, orig_y1, orig_x2, orig_y2,angle = int(x1_norm), int(y1_norm), int(x2_norm), int(y2_norm), int(angle) + + color = used_colors[entity_idx % len(used_colors)] # tuple(np.random.randint(0, 255, size=3).tolist()) + top_right=(orig_x1,orig_y1) + bottom_left=(orig_x2,orig_y2) + angle=angle + rotated_bbox = rotate_bbox(top_right, bottom_left, angle) + new_image=cv2.polylines(new_image, [rotated_bbox.astype(np.int32)], isClosed=True,thickness=2, color=color) + + # new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line) + + if mode == 'all': + l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1 + + x1 = orig_x1 - l_o + y1 = orig_y1 - l_o + + if y1 < text_height + text_offset_original + 2 * text_spaces: + y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces + x1 = orig_x1 + r_o + + # add text background + (text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, + text_line) + text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - ( + text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1 + + for prev_bbox in previous_bboxes: + if computeIoU((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']) > 0.95 and \ + prev_bbox['phrase'] == entity_name: + skip_flag = True + break + while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox['bbox']): + text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces) + text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces) + y1 += (text_height + text_offset_original + 2 * text_spaces) + + if text_bg_y2 >= image_h: + text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces)) + text_bg_y2 = image_h + y1 = image_h + break + if not skip_flag: + alpha = 0.5 + for i in range(text_bg_y1, text_bg_y2): + for j in range(text_bg_x1, text_bg_x2): + if i < image_h and j < image_w: + if j < text_bg_x1 + 1.35 * c_width: + # original color + bg_color = color + else: + # white + bg_color = [255, 255, 255] + new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype( + np.uint8) + + cv2.putText( + new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), + cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA + ) + + previous_bboxes.append( + {'bbox': (text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), 'phrase': entity_name}) + + if mode == 'all': + def color_iterator(colors): + while True: + for color in colors: + yield color + + color_gen = color_iterator(colors) + + # Add colors to phrases and remove

+ def colored_phrases(match): + phrase = match.group(1) + color = next(color_gen) + return f'{phrase}' + + generation = re.sub(r'{<\d+><\d+><\d+><\d+>}|', '', generation) + generation_colored = re.sub(r'

(.*?)

', colored_phrases, generation) + else: + generation_colored = '' + + pil_image = Image.fromarray(new_image) + return pil_image, generation_colored + + +def gradio_reset(chat_state, img_list): + if chat_state is not None: + chat_state.messages = [] + if img_list is not None: + img_list = [] + return None, gr.update(value=None, interactive=True), gr.update(placeholder='Upload your image and chat', + interactive=True), chat_state, img_list + + +def image_upload_trigger(upload_flag, replace_flag, img_list): + # set the upload flag to true when receive a new image. + # if there is an old image (and old conversation), set the replace flag to true to reset the conv later. + upload_flag = 1 + if img_list: + replace_flag = 1 + return upload_flag, replace_flag + + +def example_trigger(text_input, image, upload_flag, replace_flag, img_list): + # set the upload flag to true when receive a new image. + # if there is an old image (and old conversation), set the replace flag to true to reset the conv later. + upload_flag = 1 + if img_list or replace_flag == 1: + replace_flag = 1 + + return upload_flag, replace_flag + + +def gradio_ask(user_message, chatbot, chat_state, gr_img, img_list, upload_flag, replace_flag): + if len(user_message) == 0: + text_box_show = 'Input should not be empty!' + else: + text_box_show = '' + + if isinstance(gr_img, dict): + gr_img, mask = gr_img['image'], gr_img['mask'] + else: + mask = None + + if '[identify]' in user_message: + # check if user provide bbox in the text input + integers = re.findall(r'-?\d+', user_message) + if len(integers) != 4: # no bbox in text + bbox = mask2bbox(mask) + user_message = user_message + bbox + + if chat_state is None: + chat_state = CONV_VISION.copy() + + if upload_flag: + if replace_flag: + chat_state = CONV_VISION.copy() # new image, reset everything + replace_flag = 0 + chatbot = [] + img_list = [] + llm_message = chat.upload_img(gr_img, chat_state, img_list) + upload_flag = 0 + + chat.ask(user_message, chat_state) + + chatbot = chatbot + [[user_message, None]] + + if '[identify]' in user_message: + visual_img, _ = visualize_all_bbox_together(gr_img, user_message) + if visual_img is not None: + file_path = save_tmp_img(visual_img) + chatbot = chatbot + [[(file_path,), None]] + + return text_box_show, chatbot, chat_state, img_list, upload_flag, replace_flag + + +# def gradio_answer(chatbot, chat_state, img_list, temperature): +# llm_message = chat.answer(conv=chat_state, +# img_list=img_list, +# temperature=temperature, +# max_new_tokens=500, +# max_length=2000)[0] +# chatbot[-1][1] = llm_message +# return chatbot, chat_state + + +def gradio_stream_answer(chatbot, chat_state, img_list, temperature): + if len(img_list) > 0: + if not isinstance(img_list[0], torch.Tensor): + chat.encode_img(img_list) + streamer = chat.stream_answer(conv=chat_state, + img_list=img_list, + temperature=temperature, + max_new_tokens=500, + max_length=2000) + # chatbot[-1][1] = output + # chat_state.messages[-1][1] = '' + + output = '' + for new_output in streamer: + # print(new_output) + output=output+new_output + print(output) + # if "{" in output: + # chatbot[-1][1]="Grounding and referring expression is still under work." + # else: + output = escape_markdown(output) + # output += escapped + chatbot[-1][1] = output + yield chatbot, chat_state + chat_state.messages[-1][1] = '' + return chatbot, chat_state + + +def gradio_visualize(chatbot, gr_img): + if isinstance(gr_img, dict): + gr_img, mask = gr_img['image'], gr_img['mask'] + + unescaped = reverse_escape(chatbot[-1][1]) + visual_img, generation_color = visualize_all_bbox_together(gr_img, unescaped) + if visual_img is not None: + if len(generation_color): + chatbot[-1][1] = generation_color + file_path = save_tmp_img(visual_img) + chatbot = chatbot + [[None, (file_path,)]] + + return chatbot + + +def gradio_taskselect(idx): + prompt_list = [ + '', + 'Classify the image in the following classes: ', + '[identify] what is this ', + ] + instruct_list = [ + '**Hint:** Type in whatever you want', + '**Hint:** Type in the classes you want the model to classify in', + '**Hint:** Draw a bounding box on the uploaded image then send the command. Click the "clear" botton on the top right of the image before redraw', + ] + return prompt_list[idx], instruct_list[idx] + + + + +chat = Chat(model, image_processor,tokenizer, device=device) + + +title = """

GeoChat Demo

""" +description = 'Welcome to Our GeoChat Chatbot Demo!' +article = """

""" +# article = """

""" + +introduction = ''' +1. Identify: Draw the bounding box on the uploaded image window and CLICK **Send** to generate the bounding box. (CLICK "clear" button before re-drawing next time). +2. No Tag: Input whatever you want and CLICK **Send** without any tagging + +You can also simply chat in free form! +''' + + +text_input = gr.Textbox(placeholder='Upload your image and chat', interactive=True, show_label=False, container=False, + scale=12) +with gr.Blocks() as demo: + gr.Markdown(title) + # gr.Markdown(description) + gr.Markdown(article) + + with gr.Row(): + with gr.Column(scale=0.5): + image = gr.Image(type="pil", tool='sketch', brush_radius=20) + + temperature = gr.Slider( + minimum=0.1, + maximum=1.5, + value=0.6, + step=0.1, + interactive=True, + label="Temperature", + ) + + clear = gr.Button("Restart") + + gr.Markdown(introduction) + + with gr.Column(): + chat_state = gr.State(value=None) + img_list = gr.State(value=[]) + chatbot = gr.Chatbot(label='GeoChat') + + dataset = gr.Dataset( + components=[gr.Textbox(visible=False)], + samples=[['No Tag'], ['Scene Classification'],['Identify']], + type="index", + label='Task Shortcuts', + ) + task_inst = gr.Markdown('**Hint:** Upload your image and chat') + with gr.Row(): + text_input.render() + send = gr.Button("Send", variant='primary', size='sm', scale=1) + + upload_flag = gr.State(value=0) + replace_flag = gr.State(value=0) + image.upload(image_upload_trigger, [upload_flag, replace_flag, img_list], [upload_flag, replace_flag]) + + with gr.Row(): + with gr.Column(): + gr.Examples(examples=[ + ["demo_images/train_2956_0001.png", "Where are the airplanes located and what is their type?", upload_flag, replace_flag, + img_list], + ["demo_images/7292.JPG", "How many buildings are flooded?", upload_flag, + replace_flag, img_list], + ], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger, + outputs=[upload_flag, replace_flag]) + with gr.Column(): + gr.Examples(examples=[ + ["demo_images/church_183.png", "Classify the image in the following classes: Church, Beach, Dense Residential, Storage Tanks.", + upload_flag, replace_flag, img_list], + ["demo_images/04444.png", "[identify] what is this {<8><26><22><37>}", upload_flag, + replace_flag, img_list], + ], inputs=[image, text_input, upload_flag, replace_flag, img_list], fn=example_trigger, + outputs=[upload_flag, replace_flag]) + + dataset.click( + gradio_taskselect, + inputs=[dataset], + outputs=[text_input, task_inst], + show_progress="hidden", + postprocess=False, + queue=False, + ) + + text_input.submit( + gradio_ask, + [text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag], + [text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False + ).success( + gradio_stream_answer, + [chatbot, chat_state, img_list, temperature], + [chatbot, chat_state] + ).success( + gradio_visualize, + [chatbot, image], + [chatbot], + queue=False, + ) + + send.click( + gradio_ask, + [text_input, chatbot, chat_state, image, img_list, upload_flag, replace_flag], + [text_input, chatbot, chat_state, img_list, upload_flag, replace_flag], queue=False + ).success( + gradio_stream_answer, + [chatbot, chat_state, img_list, temperature], + [chatbot, chat_state] + ).success( + gradio_visualize, + [chatbot, image], + [chatbot], + queue=False, + ) + + clear.click(gradio_reset, [chat_state, img_list], [chatbot, image, text_input, chat_state, img_list], queue=False) + +demo.launch(share=True, enable_queue=True,server_name='0.0.0.0') diff --git a/pyproject.toml b/pyproject.toml new file mode 100644 index 0000000000000000000000000000000000000000..e0559092ad1e83d766bf7657b5cf043f3fa18cb0 --- /dev/null +++ b/pyproject.toml @@ -0,0 +1,39 @@ +[build-system] +requires = ["setuptools>=61.0"] +build-backend = "setuptools.build_meta" + +[project] +name = "geochat" +version = "1.1.1" +description = "Grounded VLM for Remote Sensing" +readme = "README.md" +requires-python = ">=3.8" +classifiers = [ + "Programming Language :: Python :: 3", + "License :: OSI Approved :: Apache Software License", +] +dependencies = [ + "einops", "fastapi", "gradio==3.35.2", "markdown2[all]", "numpy", + "requests", "sentencepiece", "tokenizers>=0.12.1", + "torch==2.0.1", "torchvision==0.15.2", "uvicorn", "wandb", + "shortuuid", "httpx==0.24.0", + "deepspeed==0.9.5", + "peft==0.4.0", + "transformers==4.31.0", + "accelerate==0.21.0", + "bitsandbytes==0.41.0", + "scikit-learn==1.2.2", + "sentencepiece==0.1.99", + "einops==0.6.1", "einops-exts==0.0.4", "timm==0.6.13", + "gradio_client==0.2.9" +] + +[project.urls] +"Homepage" = "https://github.com/mbzuai-oryx/GeoChat" +"Bug Tracker" = "https://github.com/mbzuai-oryx/GeoChat/issues" + +[tool.setuptools.packages.find] +exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"] + +[tool.wheel] +exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"]