Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import numpy as np | |
| import random | |
| import spaces #[uncomment to use ZeroGPU] | |
| from diffusers import DiffusionPipeline | |
| import torch | |
| model_ids = [ | |
| 'Prgckwb/trpfrog-sd3.5-large', | |
| 'Prgckwb/trpfrog-sd3.5-medium', | |
| 'Prgckwb/trpfrog-sdxl', | |
| 'Prgckwb/trpfrog-diffusion', | |
| ] | |
| if torch.cuda.is_available(): | |
| torch_dtype = torch.float16 | |
| device = "cuda" | |
| else: | |
| torch_dtype = torch.float32 | |
| device = "cpu" | |
| pipelines = {model_id: DiffusionPipeline(model_id, device=device, dtype=torch_dtype) for model_id in model_ids} | |
| def inference( | |
| model_id: str, | |
| prompt: str, | |
| width: int, | |
| height: int, | |
| progress=gr.Progress(track_tqdm=True), | |
| ): | |
| pipe = pipelines[model_id].to(device) | |
| image = pipe( | |
| prompt=prompt, | |
| width=width, | |
| height=height, | |
| ).images[0] | |
| return image | |
| if __name__ == '__main__': | |
| theme = gr.themes.Ocean() | |
| demo = gr.Interface( | |
| fn=inference, | |
| inputs=[ | |
| gr.Dropdown(label='Model', choices=model_ids, value=model_ids[0]), | |
| gr.Textbox(label='Prompt', placeholder='an icon of trpfrog'), | |
| gr.Slider(label='Width', minimum=64, maximum=1024, step=64, value=1024), | |
| gr.Slider(label='Height', minimum=64, maximum=1024, step=64, value=1024), | |
| ], | |
| outputs=[ | |
| gr.Image(label='Output'), | |
| ], | |
| theme=theme, | |
| ) | |
| demo.queue().launch() | |