Spaces:
Sleeping
Sleeping
import gradio as gr | |
import numpy as np | |
import random | |
import spaces # [uncomment to use ZeroGPU] | |
from diffusers import DiffusionPipeline | |
import torch | |
model_ids = [ | |
"Prgckwb/trpfrog-sd3.5-large", | |
"Prgckwb/trpfrog-diffusion", | |
] | |
if torch.cuda.is_available(): | |
torch_dtype = torch.float16 | |
device = "cuda" | |
else: | |
torch_dtype = torch.float32 | |
device = "cpu" | |
pipelines = { | |
model_id: DiffusionPipeline.from_pretrained( | |
model_id, torch_dtype=torch_dtype | |
) | |
for model_id in model_ids | |
} | |
def inference( | |
model_id: str, | |
prompt: str, | |
width: int, | |
height: int, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
pipe = pipelines[model_id].to(device) | |
image = pipe( | |
prompt=prompt, | |
width=width, | |
height=height, | |
).images[0] | |
return image | |
if __name__ == "__main__": | |
theme = gr.themes.Ocean() | |
demo = gr.Interface( | |
fn=inference, | |
inputs=[ | |
gr.Dropdown(label="Model", choices=model_ids, value=model_ids[0]), | |
gr.Textbox(label="Prompt", placeholder="an icon of trpfrog"), | |
gr.Slider(label="Width", minimum=64, maximum=1024, step=64, value=1024), | |
gr.Slider(label="Height", minimum=64, maximum=1024, step=64, value=1024), | |
], | |
outputs=[ | |
gr.Image(label="Output"), | |
], | |
theme=theme, | |
) | |
demo.queue().launch() | |