Spaces:
Sleeping
Sleeping
Commit
·
4201985
1
Parent(s):
ad8d5aa
Upload folder using huggingface_hub
Browse files
app.py
CHANGED
@@ -26,79 +26,59 @@ def on_btn_click():
|
|
26 |
|
27 |
|
28 |
def main():
|
29 |
-
st.title("
|
30 |
-
|
31 |
-
|
|
|
32 |
)
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
)
|
40 |
-
name = "default"
|
41 |
-
camera = dict(
|
42 |
-
up=dict(x=0, y=0, z=1),
|
43 |
-
center=dict(x=0, y=0, z=0),
|
44 |
-
eye=dict(x=1.25, y=1.25, z=1.25),
|
45 |
-
)
|
46 |
-
fig.update_layout(scene_camera=camera, title=name)
|
47 |
-
st.plotly_chart(fig)
|
48 |
-
df = px.data.election()
|
49 |
-
geojson = px.data.election_geojson()
|
50 |
-
fig = px.choropleth_mapbox(
|
51 |
-
df,
|
52 |
-
geojson=geojson,
|
53 |
-
color="Bergeron",
|
54 |
-
locations="district",
|
55 |
-
featureidkey="properties.district",
|
56 |
-
center={"lat": 45.5517, "lon": -73.7073},
|
57 |
-
mapbox_style="carto-positron",
|
58 |
-
zoom=9,
|
59 |
-
)
|
60 |
-
st.plotly_chart(fig)
|
61 |
-
fig = make_subplots(
|
62 |
-
rows=2,
|
63 |
-
cols=2,
|
64 |
-
specs=[
|
65 |
-
[{"type": "surface"}, {"type": "surface"}],
|
66 |
-
[{"type": "surface"}, {"type": "surface"}],
|
67 |
-
],
|
68 |
-
)
|
69 |
-
x = np.linspace(-5, 80, 10)
|
70 |
-
y = np.linspace(-5, 60, 10)
|
71 |
-
xGrid, yGrid = np.meshgrid(y, x)
|
72 |
-
z = xGrid**3 + yGrid**3
|
73 |
-
fig.add_trace(
|
74 |
-
go.Surface(x=x, y=y, z=z, colorscale="Viridis", showscale=False), row=1, col=1
|
75 |
-
)
|
76 |
-
fig.add_trace(
|
77 |
-
go.Surface(x=x, y=y, z=z, colorscale="RdBu", showscale=False), row=1, col=2
|
78 |
-
)
|
79 |
-
fig.add_trace(
|
80 |
-
go.Surface(x=x, y=y, z=z, colorscale="YlOrRd", showscale=False), row=2, col=1
|
81 |
-
)
|
82 |
-
fig.add_trace(
|
83 |
-
go.Surface(x=x, y=y, z=z, colorscale="YlGnBu", showscale=False), row=2, col=2
|
84 |
-
)
|
85 |
-
fig.update_layout(
|
86 |
-
title_text="3D subplots with different colorscales", height=800, width=800
|
87 |
-
)
|
88 |
-
st.plotly_chart(fig)
|
89 |
-
fig = px.scatter_3d(
|
90 |
-
px.data.iris(),
|
91 |
-
x="sepal_length",
|
92 |
-
y="sepal_width",
|
93 |
-
z="petal_width",
|
94 |
-
color="petal_length",
|
95 |
-
size="petal_length",
|
96 |
-
size_max=18,
|
97 |
-
symbol="species",
|
98 |
-
opacity=0.7,
|
99 |
-
)
|
100 |
-
fig.update_layout(margin=dict(l=0, r=0, b=0, t=0))
|
101 |
-
st.plotly_chart(fig)
|
102 |
|
103 |
|
104 |
if __name__ == "__main__":
|
|
|
26 |
|
27 |
|
28 |
def main():
|
29 |
+
st.title(" Stock Forecasting App")
|
30 |
+
uploaded_file = st.file_uploader("Choose a file", type=["jpg", "png", "mp3"])
|
31 |
+
value = st.slider(
|
32 |
+
" Select Horizon Period", min_value=0, max_value=100, value=50, key=18
|
33 |
)
|
34 |
+
value = st.slider(" Folds", min_value=0, max_value=100, value=50, key=80)
|
35 |
+
if st.button(" start"):
|
36 |
+
st.write("Button clicked!")
|
37 |
+
st.title(" Training")
|
38 |
+
(
|
39 |
+
col1,
|
40 |
+
col2,
|
41 |
+
) = st.columns(2)
|
42 |
+
with col1:
|
43 |
+
st.table(
|
44 |
+
{
|
45 |
+
"Country": ["USA", "Canada", "UK", "Australia"],
|
46 |
+
"Population (millions)": [331, 38, 66, 25],
|
47 |
+
"GDP (trillion USD)": [22.675, 1.843, 2.855, 1.488],
|
48 |
+
}
|
49 |
+
)
|
50 |
+
with col2:
|
51 |
+
data = {"key": "value", "name": "John Doe", "age": 30}
|
52 |
+
st.json(data)
|
53 |
+
st.title(" Forecast")
|
54 |
+
(
|
55 |
+
col1,
|
56 |
+
col2,
|
57 |
+
) = st.columns(2)
|
58 |
+
with col1:
|
59 |
+
st.line_chart(
|
60 |
+
pd.DataFrame(
|
61 |
+
{
|
62 |
+
"Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
|
63 |
+
"Adj Close"
|
64 |
+
],
|
65 |
+
"Google": yf.download(
|
66 |
+
"GOOGL", start="2023-01-01", end="2023-07-31"
|
67 |
+
)["Adj Close"],
|
68 |
+
"Microsoft": yf.download(
|
69 |
+
"MSFT", start="2023-01-01", end="2023-07-31"
|
70 |
+
)["Adj Close"],
|
71 |
+
}
|
72 |
+
)
|
73 |
+
)
|
74 |
+
with col2:
|
75 |
+
data = pd.DataFrame(
|
76 |
+
{"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
|
77 |
+
)
|
78 |
+
st.area_chart(data)
|
79 |
+
st.bar_chart(
|
80 |
+
pd.DataFrame(np.random.randn(20, 3), columns=["Apple", "Banana", "Cherry"])
|
81 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
|
84 |
if __name__ == "__main__":
|