Praveen998 commited on
Commit
23b929a
·
1 Parent(s): c98bdc4

Upload folder using huggingface_hub

Browse files
Files changed (1) hide show
  1. app.py +125 -75
app.py CHANGED
@@ -26,98 +26,128 @@ def on_btn_click():
26
 
27
 
28
  def main():
29
- st.title(" Corona Dashboard")
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
35
- option = st.selectbox(" San Francisco", [" San Francisco"])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
36
  with col2:
37
- option = st.selectbox(" Monthly / Weekly", [" Monthly ", " Weekly"])
38
- if st.checkbox(" Show raw data"):
39
- st.write("Checkbox checked!")
40
- if st.button(" Visualize"):
41
- st.write("Button clicked!")
42
- st.subheader(" Global Data")
43
- df = pd.read_csv(
44
- "https://raw.githubusercontent.com/plotly/datasets/master/volcano_db.csv",
45
- encoding="iso-8859-1",
46
- )
47
- freq = df
48
- freq = freq.Country.value_counts().reset_index().rename(columns={"count": "x"})
49
- df_v = pd.read_csv(
50
- "https://raw.githubusercontent.com/plotly/datasets/master/volcano.csv"
51
- )
52
- fig = make_subplots(
53
- rows=2,
54
- cols=2,
55
- column_widths=[0.6, 0.4],
56
- row_heights=[0.4, 0.6],
57
- specs=[
58
- [{"type": "scattergeo", "rowspan": 2}, {"type": "bar"}],
59
- [None, {"type": "surface"}],
60
- ],
61
- )
62
- fig.add_trace(
63
- go.Scattergeo(
64
- lat=df["Latitude"],
65
- lon=df["Longitude"],
66
- mode="markers",
67
- hoverinfo="text",
68
- showlegend=False,
69
- marker=dict(color="crimson", size=4, opacity=0.8),
70
  ),
71
- row=1,
72
- col=1,
73
  )
74
- fig.add_trace(
75
- go.Bar(
76
- x=freq["x"][0:10],
77
- y=freq["Country"][0:10],
78
- marker=dict(color="crimson"),
79
- showlegend=False,
80
- ),
81
- row=1,
82
- col=2,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  )
84
- fig.add_trace(go.Surface(z=df_v.values.tolist(), showscale=False), row=2, col=2)
85
- fig.update_geos(
86
- projection_type="orthographic",
87
- landcolor="white",
88
- oceancolor="MidnightBlue",
89
- showocean=True,
90
- lakecolor="LightBlue",
91
  )
92
- fig.update_xaxes(tickangle=45)
93
- fig.update_layout(
94
- template="plotly_dark",
95
- margin=dict(r=10, t=25, b=40, l=60),
96
- annotations=[
97
- dict(
98
- text="Source: NOAA",
99
- showarrow=False,
100
- xref="paper",
101
- yref="paper",
102
- x=0,
103
- y=0,
104
- )
105
- ],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
106
  )
 
 
 
 
 
 
 
 
 
107
  st.plotly_chart(fig)
108
  (
109
  col1,
110
  col2,
111
  ) = st.columns(2)
112
  with col1:
113
- st.table(
114
- {
115
- "Country": ["USA", "Canada", "UK", "Australia"],
116
- "Population (millions)": [331, 38, 66, 25],
117
- "GDP (trillion USD)": [22.675, 1.843, 2.855, 1.488],
118
- }
119
- )
120
- with col2:
121
  df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
122
  fig = px.pie(
123
  df,
@@ -129,6 +159,26 @@ def main():
129
  )
130
  fig.update_traces(textposition="inside", textinfo="percent+label")
131
  st.plotly_chart(fig)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
132
 
133
 
134
  if __name__ == "__main__":
 
26
 
27
 
28
  def main():
29
+ st.title(" All Graphs")
30
  (
31
  col1,
32
  col2,
33
  ) = st.columns(2)
34
  with col1:
35
+ st.line_chart(
36
+ pd.DataFrame(
37
+ {
38
+ "Apple": yf.download("AAPL", start="2023-01-01", end="2023-07-31")[
39
+ "Adj Close"
40
+ ],
41
+ "Google": yf.download(
42
+ "GOOGL", start="2023-01-01", end="2023-07-31"
43
+ )["Adj Close"],
44
+ "Microsoft": yf.download(
45
+ "MSFT", start="2023-01-01", end="2023-07-31"
46
+ )["Adj Close"],
47
+ }
48
+ )
49
+ )
50
  with col2:
51
+ data = pd.DataFrame(
52
+ {"X": [1, 2, 3, 4, 5], "Y1": [10, 16, 8, 14, 12], "Y2": [5, 8, 3, 6, 7]}
53
+ )
54
+ st.area_chart(data)
55
+ st.plotly_chart(
56
+ ff.create_distplot(
57
+ [np.random.randn(200) - 2, np.random.randn(200), np.random.randn(200) + 2],
58
+ ["Negative Shift", "Normal", "Positive Shift"],
59
+ bin_size=[0.1, 0.25, 0.5],
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  ),
61
+ use_container_width=True,
 
62
  )
63
+ source = vds.cars()
64
+ chart = {
65
+ "mark": "point",
66
+ "encoding": {
67
+ "x": {"field": "Horsepower", "type": "quantitative"},
68
+ "y": {"field": "Miles_per_Gallon", "type": "quantitative"},
69
+ "color": {"field": "Origin", "type": "nominal"},
70
+ "shape": {"field": "Origin", "type": "nominal"},
71
+ },
72
+ }
73
+ tab1, tab2 = st.tabs(["Streamlit theme (default)", "Vega-Lite native theme"])
74
+ with tab1:
75
+ st.vega_lite_chart(source, chart, theme="streamlit", use_container_width=True)
76
+ with tab2:
77
+ st.vega_lite_chart(source, chart, theme=None, use_container_width=True)
78
+ st.altair_chart(
79
+ alt.Chart(
80
+ pd.DataFrame(
81
+ {
82
+ "x": np.random.rand(50),
83
+ "y": np.random.rand(50),
84
+ "size": np.random.randint(10, 100, 50),
85
+ "color": np.random.rand(50),
86
+ }
87
+ )
88
+ )
89
+ .mark_circle()
90
+ .encode(
91
+ x="x",
92
+ y="y",
93
+ size="size",
94
+ color="color",
95
+ tooltip=["x", "y", "size", "color"],
96
+ )
97
+ .properties(width=600, height=400),
98
+ use_container_width=True,
99
  )
100
+ st.bar_chart(
101
+ pd.DataFrame(np.random.randn(20, 3), columns=["Apple", "Banana", "Cherry"])
 
 
 
 
 
102
  )
103
+ st.pydeck_chart(
104
+ pdk.Deck(
105
+ map_style=None,
106
+ initial_view_state=pdk.ViewState(
107
+ latitude=37.76, longitude=-122.4, zoom=11, pitch=50
108
+ ),
109
+ layers=[
110
+ pdk.Layer(
111
+ "HexagonLayer",
112
+ data=pd.DataFrame(
113
+ np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
114
+ columns=["lat", "lon"],
115
+ ),
116
+ get_position="[lon, lat]",
117
+ radius=200,
118
+ elevation_scale=4,
119
+ elevation_range=[0, 1000],
120
+ pickable=True,
121
+ extruded=True,
122
+ ),
123
+ pdk.Layer(
124
+ "ScatterplotLayer",
125
+ data=pd.DataFrame(
126
+ np.random.randn(1000, 2) / [50, 50] + [37.76, -122.4],
127
+ columns=["lat", "lon"],
128
+ ),
129
+ get_position="[lon, lat]",
130
+ get_color="[200, 30, 0, 160]",
131
+ get_radius=200,
132
+ ),
133
+ ],
134
+ )
135
  )
136
+ import datetime
137
+
138
+ np.random.seed(1)
139
+ programmers = ["Alex", "Nicole", "Sara", "Etienne", "Chelsea", "Jody", "Marianne"]
140
+ base = datetime.datetime.today()
141
+ dates = base - np.arange(180) * datetime.timedelta(days=1)
142
+ z = np.random.poisson(size=(len(programmers), len(dates)))
143
+ fig = go.Figure(data=go.Heatmap(z=z, x=dates, y=programmers, colorscale="Viridis"))
144
+ fig.update_layout(title="GitHub commits per day", xaxis_nticks=36)
145
  st.plotly_chart(fig)
146
  (
147
  col1,
148
  col2,
149
  ) = st.columns(2)
150
  with col1:
 
 
 
 
 
 
 
 
151
  df = px.data.gapminder().query("year == 2007").query("continent == 'Americas'")
152
  fig = px.pie(
153
  df,
 
159
  )
160
  fig.update_traces(textposition="inside", textinfo="percent+label")
161
  st.plotly_chart(fig)
162
+ with col2:
163
+ fig = go.Figure(
164
+ go.Sunburst(
165
+ labels=[
166
+ "Eve",
167
+ "Cain",
168
+ "Seth",
169
+ "Enos",
170
+ "Noam",
171
+ "Abel",
172
+ "Awan",
173
+ "Enoch",
174
+ "Azura",
175
+ ],
176
+ parents=["", "Eve", "Eve", "Seth", "Seth", "Eve", "Eve", "Awan", "Eve"],
177
+ values=[10, 14, 12, 10, 2, 6, 6, 4, 4],
178
+ )
179
+ )
180
+ fig.update_layout(margin=dict(t=0, l=0, r=0, b=0))
181
+ st.plotly_chart(fig)
182
 
183
 
184
  if __name__ == "__main__":