import streamlit as st import torch from transformers import AutoTokenizer, AutoModel # Load the tokenizer and model @st.cache_resource def load_model(): tokenizer = AutoTokenizer.from_pretrained('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True) model = AutoModel.from_pretrained('Alibaba-NLP/gte-base-en-v1.5', trust_remote_code=True) model.to('cpu') return tokenizer, model tokenizer, model = load_model() def extract_embeddings(text, tokenizer, model): # Tokenize the input text inputs = tokenizer(text, return_tensors="pt", padding=True, truncation=True) inputs = {k: v.to('cpu') for k, v in inputs.items()} # Get the model's outputs with torch.no_grad(): outputs = model(**inputs) # Extract the embeddings (use the output of the last hidden state) embeddings = outputs.last_hidden_state.mean(dim=1) return embeddings.squeeze().cpu().numpy() # Streamlit app st.title("Text Embeddings Extractor") text = st.text_area("Enter text to extract embeddings:", "This is an example sentence.") if st.button("Extract Embeddings"): embeddings = extract_embeddings(text, tokenizer, model) st.write("Embeddings:") st.write(embeddings)