Update app.py
Browse files
app.py
CHANGED
@@ -10,7 +10,7 @@ from langchain_core.messages import HumanMessage
|
|
10 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
11 |
|
12 |
# Set up Google API Key
|
13 |
-
os.environ["GOOGLE_API_KEY"] = "AIzaSyDOBd0_yNLckwsZJrpb9-CqTHFUx0Ah3R8" # Replace with your API
|
14 |
gemini_model = ChatGoogleGenerativeAI(model="gemini-1.5-flash")
|
15 |
|
16 |
# Load YOLO model
|
@@ -31,6 +31,7 @@ def encode_image_to_base64(image):
|
|
31 |
return base64.b64encode(img_buffer).decode('utf-8')
|
32 |
|
33 |
def analyze_image_with_gemini(current_image):
|
|
|
34 |
if current_image is None:
|
35 |
return "No image available for analysis."
|
36 |
current_image_data = encode_image_to_base64(current_image)
|
@@ -47,15 +48,18 @@ def analyze_image_with_gemini(current_image):
|
|
47 |
return f"Error processing image: {e}"
|
48 |
|
49 |
def save_crop_image(crop, track_id):
|
|
|
50 |
filename = f"{crop_folder}/{track_id}.jpg"
|
51 |
cv2.imwrite(filename, crop)
|
52 |
return filename
|
53 |
|
54 |
def process_crop_image(crop, track_id):
|
|
|
55 |
response = analyze_image_with_gemini(crop)
|
56 |
st.session_state["responses"].append((track_id, response))
|
57 |
|
58 |
def process_video(uploaded_file):
|
|
|
59 |
if not uploaded_file:
|
60 |
return None
|
61 |
|
@@ -65,15 +69,22 @@ def process_video(uploaded_file):
|
|
65 |
f.write(video_bytes)
|
66 |
|
67 |
cap = cv2.VideoCapture(video_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
68 |
output_path = "output_video.mp4"
|
69 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
70 |
-
out = cv2.VideoWriter(output_path, fourcc,
|
71 |
-
|
72 |
while cap.isOpened():
|
73 |
ret, frame = cap.read()
|
74 |
if not ret:
|
75 |
break
|
76 |
-
|
77 |
results = yolo_model.track(frame, persist=True)
|
78 |
if results[0].boxes is not None:
|
79 |
boxes = results[0].boxes.xyxy.int().cpu().tolist()
|
@@ -84,22 +95,31 @@ def process_video(uploaded_file):
|
|
84 |
crop = frame[y1:y2, x1:x2]
|
85 |
save_crop_image(crop, track_id)
|
86 |
threading.Thread(target=process_crop_image, args=(crop, track_id)).start()
|
87 |
-
|
|
|
88 |
out.write(frame)
|
|
|
89 |
cap.release()
|
90 |
out.release()
|
|
|
91 |
return output_path
|
92 |
|
|
|
93 |
st.title("Bottle Label Checking using YOLO & Gemini AI")
|
94 |
-
st.sidebar.header("Upload a
|
95 |
uploaded_file = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi", "mov"])
|
|
|
96 |
if "responses" not in st.session_state:
|
97 |
st.session_state["responses"] = []
|
|
|
98 |
if uploaded_file:
|
99 |
-
st.sidebar.write("Processing...")
|
100 |
output_video_path = process_video(uploaded_file)
|
101 |
-
|
102 |
-
|
|
|
|
|
|
|
103 |
st.subheader("AI Analysis Results")
|
104 |
for track_id, response in st.session_state["responses"]:
|
105 |
st.write(f"**Track ID {track_id}:** {response}")
|
|
|
10 |
from langchain_google_genai import ChatGoogleGenerativeAI
|
11 |
|
12 |
# Set up Google API Key
|
13 |
+
os.environ["GOOGLE_API_KEY"] = "AIzaSyDOBd0_yNLckwsZJrpb9-CqTHFUx0Ah3R8" # Replace with your actual API key
|
14 |
gemini_model = ChatGoogleGenerativeAI(model="gemini-1.5-flash")
|
15 |
|
16 |
# Load YOLO model
|
|
|
31 |
return base64.b64encode(img_buffer).decode('utf-8')
|
32 |
|
33 |
def analyze_image_with_gemini(current_image):
|
34 |
+
"""Send image to Gemini API for analysis."""
|
35 |
if current_image is None:
|
36 |
return "No image available for analysis."
|
37 |
current_image_data = encode_image_to_base64(current_image)
|
|
|
48 |
return f"Error processing image: {e}"
|
49 |
|
50 |
def save_crop_image(crop, track_id):
|
51 |
+
"""Save cropped image of detected bottle."""
|
52 |
filename = f"{crop_folder}/{track_id}.jpg"
|
53 |
cv2.imwrite(filename, crop)
|
54 |
return filename
|
55 |
|
56 |
def process_crop_image(crop, track_id):
|
57 |
+
"""Process image asynchronously using Gemini AI."""
|
58 |
response = analyze_image_with_gemini(crop)
|
59 |
st.session_state["responses"].append((track_id, response))
|
60 |
|
61 |
def process_video(uploaded_file):
|
62 |
+
"""Process uploaded video, detect objects, and create an output video."""
|
63 |
if not uploaded_file:
|
64 |
return None
|
65 |
|
|
|
69 |
f.write(video_bytes)
|
70 |
|
71 |
cap = cv2.VideoCapture(video_path)
|
72 |
+
if not cap.isOpened():
|
73 |
+
st.error("Error: Could not open video file.")
|
74 |
+
return None
|
75 |
+
|
76 |
+
fps = int(cap.get(cv2.CAP_PROP_FPS))
|
77 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
78 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
79 |
output_path = "output_video.mp4"
|
80 |
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
|
81 |
+
out = cv2.VideoWriter(output_path, fourcc, fps, (width, height))
|
82 |
+
|
83 |
while cap.isOpened():
|
84 |
ret, frame = cap.read()
|
85 |
if not ret:
|
86 |
break
|
87 |
+
|
88 |
results = yolo_model.track(frame, persist=True)
|
89 |
if results[0].boxes is not None:
|
90 |
boxes = results[0].boxes.xyxy.int().cpu().tolist()
|
|
|
95 |
crop = frame[y1:y2, x1:x2]
|
96 |
save_crop_image(crop, track_id)
|
97 |
threading.Thread(target=process_crop_image, args=(crop, track_id)).start()
|
98 |
+
processed_track_ids.add(track_id)
|
99 |
+
|
100 |
out.write(frame)
|
101 |
+
|
102 |
cap.release()
|
103 |
out.release()
|
104 |
+
|
105 |
return output_path
|
106 |
|
107 |
+
# Streamlit UI
|
108 |
st.title("Bottle Label Checking using YOLO & Gemini AI")
|
109 |
+
st.sidebar.header("Upload a Video")
|
110 |
uploaded_file = st.sidebar.file_uploader("Choose a video file", type=["mp4", "avi", "mov"])
|
111 |
+
|
112 |
if "responses" not in st.session_state:
|
113 |
st.session_state["responses"] = []
|
114 |
+
|
115 |
if uploaded_file:
|
116 |
+
st.sidebar.write("Processing video, please wait...")
|
117 |
output_video_path = process_video(uploaded_file)
|
118 |
+
|
119 |
+
if output_video_path:
|
120 |
+
st.sidebar.success("Processing completed!")
|
121 |
+
st.video(output_video_path)
|
122 |
+
|
123 |
st.subheader("AI Analysis Results")
|
124 |
for track_id, response in st.session_state["responses"]:
|
125 |
st.write(f"**Track ID {track_id}:** {response}")
|