Prathamesh1420's picture
Update app.py
ba059c9 verified
import gradio as gr
import cv2
import numpy as np
import os
import time
import threading
import base64
from ultralytics import YOLO
from langchain_core.messages import HumanMessage
from langchain_google_genai import ChatGoogleGenerativeAI
# Set up Google API Key
os.environ["GOOGLE_API_KEY"] = "YOUR_GOOGLE_API_KEY" # Replace with your API Key
gemini_model = ChatGoogleGenerativeAI(model="gemini-1.5-flash")
# Load YOLO model
yolo_model = YOLO("best.pt")
names = yolo_model.names
# Constants for ROI detection
cx1 = 491
offset = 8
current_date = time.strftime("%Y-%m-%d")
crop_folder = f"crop_{current_date}"
if not os.path.exists(crop_folder):
os.makedirs(crop_folder)
# Track processed IDs to avoid duplicate processing
processed_track_ids = set()
lock = threading.Lock() # Ensure thread-safe operations
def encode_image_to_base64(image):
_, img_buffer = cv2.imencode('.jpg', image)
return base64.b64encode(img_buffer).decode('utf-8')
def analyze_image_with_gemini(current_image):
if current_image is None:
return "No image available for analysis."
current_image_data = encode_image_to_base64(current_image)
message = HumanMessage(
content=[
{"type": "text", "text": "Analyze this image and check if the label is present on the bottle. Return results in a structured format."},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{current_image_data}"}, "description": "Detected product"}
]
)
try:
response = gemini_model.invoke([message])
return response.content
except Exception as e:
return f"Error processing image: {e}"
def save_crop_image(crop, track_id):
filename = f"{crop_folder}/{track_id}.jpg"
cv2.imwrite(filename, crop)
return filename
def process_crop_image(crop, track_id, responses):
response = analyze_image_with_gemini(crop)
responses.append((track_id, response))
def process_video(video_path):
cap = cv2.VideoCapture(video_path)
output_path = "output_video.mp4"
fourcc = cv2.VideoWriter_fourcc(*"mp4v")
out = cv2.VideoWriter(output_path, fourcc, 20.0, (1020, 500))
responses = []
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
frame = cv2.resize(frame, (1020, 500))
results = yolo_model.track(frame, persist=True)
if results[0].boxes is not None:
boxes = results[0].boxes.xyxy.int().cpu().tolist()
track_ids = results[0].boxes.id.int().cpu().tolist() if results[0].boxes.id is not None else [-1] * len(boxes)
for box, track_id in zip(boxes, track_ids):
with lock: # Prevent race condition
if track_id not in processed_track_ids:
x1, y1, x2, y2 = box
crop = frame[y1:y2, x1:x2]
save_crop_image(crop, track_id)
threading.Thread(target=process_crop_image, args=(crop, track_id, responses)).start()
processed_track_ids.add(track_id)
out.write(frame)
cap.release()
out.release()
return output_path, responses
def process_and_return(video_file):
if not video_file:
return None, "No video uploaded."
video_path = "uploaded_video.mp4"
with open(video_path, "wb") as f:
f.write(video_file)
output_video_path, analysis_results = process_video(video_path)
results_text = "\n".join([f"**Track ID {track_id}:** {response}" for track_id, response in analysis_results])
return output_video_path, results_text
# Gradio Interface
with gr.Blocks() as demo:
gr.Markdown("# Bottle Label Checking using YOLO & Gemini AI")
with gr.Row():
video_input = gr.File(label="Upload a video", type="binary")
process_button = gr.Button("Process Video")
with gr.Row():
video_output = gr.Video(label="Processed Video")
download_button = gr.File(label="Download Processed Video")
analysis_results = gr.Markdown(label="AI Analysis Results")
process_button.click(
fn=process_and_return,
inputs=video_input,
outputs=[video_output, analysis_results]
)
download_button.change(
fn=lambda x: x if x else None,
inputs=video_output,
outputs=download_button
)
demo.launch()