Spaces:
Build error
Build error
Pratham Bhat
commited on
Commit
·
853e734
1
Parent(s):
b2344d3
Reverted changes
Browse files
main.py
CHANGED
@@ -36,29 +36,36 @@ def format_prompt(system, message, history):
|
|
36 |
prompt += {"role": "user", "content": message}
|
37 |
return prompt
|
38 |
|
39 |
-
def setup():
|
40 |
-
|
41 |
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
|
|
|
|
|
|
49 |
|
50 |
-
|
51 |
-
|
|
|
|
|
|
|
52 |
|
|
|
|
|
|
|
|
|
|
|
53 |
model_path = "ibm-granite/granite-34b-code-instruct-8k"
|
54 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
55 |
# drop device_map if running on CPU
|
56 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
57 |
model.eval()
|
58 |
-
|
59 |
-
return model, tokenizer, device
|
60 |
-
|
61 |
-
def generate(item: Item, model, tokenizer, device):
|
62 |
# change input text as desired
|
63 |
chat = format_prompt(item.system_prompt, item.prompt, item.history)
|
64 |
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
@@ -73,11 +80,12 @@ def generate(item: Item, model, tokenizer, device):
|
|
73 |
return output_text
|
74 |
|
75 |
|
76 |
-
model, tokenizer, device = setup()
|
77 |
|
78 |
@app.post("/generate/")
|
79 |
async def generate_text(item: Item):
|
80 |
-
return {"response": generate(item
|
|
|
81 |
|
82 |
@app.get("/")
|
83 |
async def generate_text_root(item: Item):
|
|
|
36 |
prompt += {"role": "user", "content": message}
|
37 |
return prompt
|
38 |
|
39 |
+
# def setup():
|
40 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
41 |
|
42 |
+
# # if torch.backends.mps.is_available():
|
43 |
+
# # device = torch.device("mps")
|
44 |
+
# # x = torch.ones(1, device=device)
|
45 |
+
# # print (x)
|
46 |
+
# # else:
|
47 |
+
# # device="cpu"
|
48 |
+
# # print ("MPS device not found.")
|
49 |
+
|
50 |
+
# # device = "auto"
|
51 |
+
# # device=torch.device("cpu")
|
52 |
|
53 |
+
# model_path = "ibm-granite/granite-34b-code-instruct-8k"
|
54 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_path)
|
55 |
+
# # drop device_map if running on CPU
|
56 |
+
# model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
57 |
+
# model.eval()
|
58 |
|
59 |
+
# return model, tokenizer, device
|
60 |
+
|
61 |
+
def generate(item: Item):
|
62 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
63 |
+
|
64 |
model_path = "ibm-granite/granite-34b-code-instruct-8k"
|
65 |
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
66 |
# drop device_map if running on CPU
|
67 |
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
|
68 |
model.eval()
|
|
|
|
|
|
|
|
|
69 |
# change input text as desired
|
70 |
chat = format_prompt(item.system_prompt, item.prompt, item.history)
|
71 |
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
|
|
|
80 |
return output_text
|
81 |
|
82 |
|
83 |
+
# model, tokenizer, device = setup()
|
84 |
|
85 |
@app.post("/generate/")
|
86 |
async def generate_text(item: Item):
|
87 |
+
return {"response": generate(item)}
|
88 |
+
# return {"response": generate(item, model, tokenizer, device)}
|
89 |
|
90 |
@app.get("/")
|
91 |
async def generate_text_root(item: Item):
|