Pratham Bhat commited on
Commit
0252e20
·
1 Parent(s): 037b09f

Pull the model before starting the container

Browse files
Files changed (2) hide show
  1. Dockerfile +3 -0
  2. main.py +2 -2
Dockerfile CHANGED
@@ -3,6 +3,7 @@ FROM python:3.9
3
  WORKDIR /code
4
  RUN mkdir -p /code && chmod -R 777 /code
5
  RUN mkdir -p /.cache && chmod -R 777 /.cache
 
6
 
7
  COPY ./requirements.txt /code/requirements.txt
8
 
@@ -10,4 +11,6 @@ RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
10
 
11
  COPY . .
12
 
 
 
13
  CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
 
3
  WORKDIR /code
4
  RUN mkdir -p /code && chmod -R 777 /code
5
  RUN mkdir -p /.cache && chmod -R 777 /.cache
6
+ RUN mkdir -p /.cache/huggingface && chmod -R 777 /.cache/huggingface
7
 
8
  COPY ./requirements.txt /code/requirements.txt
9
 
 
11
 
12
  COPY . .
13
 
14
+ RUN python3 -c "from transformers import AutoModelForCausalLM; AutoModelForCausalLM.from_pretrained('ibm-granite/granite-34b-code-instruct-8k', cache_dir='/.cache/huggingface')"
15
+
16
  CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
main.py CHANGED
@@ -65,11 +65,11 @@ def setup():
65
 
66
  model_path = "ibm-granite/granite-34b-code-instruct-8k"
67
  print("Loading tokenizer for model: " + model_path, file=sys.stderr)
68
- tokenizer = AutoTokenizer.from_pretrained(model_path)
69
 
70
  print("Loading Model for causal LM for model: " + model_path, file=sys.stderr)
71
  # drop device_map if running on CPU
72
- model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
73
  model.eval()
74
 
75
  return model, tokenizer, device
 
65
 
66
  model_path = "ibm-granite/granite-34b-code-instruct-8k"
67
  print("Loading tokenizer for model: " + model_path, file=sys.stderr)
68
+ tokenizer = AutoTokenizer.from_pretrained(model_path, cache_dir="/.cache/huggingface")
69
 
70
  print("Loading Model for causal LM for model: " + model_path, file=sys.stderr)
71
  # drop device_map if running on CPU
72
+ model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, cache_dir="/.cache/huggingface")
73
  model.eval()
74
 
75
  return model, tokenizer, device