bai-granite / main.py
Pratham Bhat
Run app locally
3d61fab
# from https://huggingface.co/spaces/iiced/mixtral-46.7b-fastapi/blob/main/main.py
# example of use:
# curl -X POST \
# -H "Content-Type: application/json" \
# -d '{
# "prompt": "What is the capital of France?",
# "history": [],
# "system_prompt": "You are a very powerful AI assistant."
# }' \
# https://phk0-bai.hf.space/generate/
from fastapi import FastAPI
from pydantic import BaseModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import sys
import uvicorn
import torch
# torch.mps.empty_cache()
# torch.set_num_threads(1)
from transformers.utils import logging
logging.set_verbosity_info()
logger = logging.get_logger() # optional: get a logger instance if you want to customize
logger.info("Hugging Face Transformers download started.")
app = FastAPI()
class Item(BaseModel):
prompt: str
history: list
system_prompt: str
temperature: float = 0.0
max_new_tokens: int = 900
top_p: float = 0.15
repetition_penalty: float = 1.0
def format_prompt(system, message, history):
prompt = [{"role": "system", "content": system}]
for user_prompt, bot_response in history:
prompt += {"role": "user", "content": user_prompt}
prompt += {"role": "assistant", "content": bot_response}
prompt += {"role": "user", "content": message}
return prompt
def setup():
device = "cuda" if torch.cuda.is_available() else "cpu"
# if torch.backends.mps.is_available():
# device = torch.device("mps")
# x = torch.ones(1, device=device)
# print (x)
# else:
# device="cpu"
# print ("MPS device not found.")
# device = "auto"
# device=torch.device("cpu")
model_path = "ibm-granite/granite-34b-code-instruct-8k"
print("Loading tokenizer for model: " + model_path, file=sys.stderr)
tokenizer = AutoTokenizer.from_pretrained(model_path, cache_dir="/.cache/huggingface")
print("Loading Model for causal LM for model: " + model_path, file=sys.stderr)
# drop device_map if running on CPU
model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device, cache_dir="/.cache/huggingface")
model.eval()
return model, tokenizer, device
def generate(item: Item, model, tokenizer, device):
# device = "cuda" if torch.cuda.is_available() else "cpu"
# model_path = "ibm-granite/granite-34b-code-instruct-8k"
# print("Loading tokenizer for model: " + model_path, file=sys.stderr)
# tokenizer = AutoTokenizer.from_pretrained(model_path, cache_dir="/code/huggingface/transformers")
# # drop device_map if running on CPU
# print("Loading Model for causal LM for model: " + model_path, file=sys.stderr)
# model = AutoModelForCausalLM.from_pretrained(model_path, device_map=device)
# model.eval()
print("Adapting the input into a template...", file=sys.stderr)
# change input text as desired
chat = format_prompt(item.system_prompt, item.prompt, item.history)
chat = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
print("Tokenizing text", file=sys.stderr)
# tokenize the text
input_tokens = tokenizer(chat, return_tensors="pt")
print("Transferring tokens to device: " + device, file=sys.stderr)
# transfer tokenized inputs to the device
for i in input_tokens:
input_tokens[i] = input_tokens[i].to(device)
print("Generating output tokens", file=sys.stderr)
# generate output tokens
output = model.generate(**input_tokens, max_new_tokens=900)
print("Decoding output tokens", file=sys.stderr)
output_text = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
return output_text
model, tokenizer, device = setup()
# model, tokenizer, device = setup()
@app.post("/generate/")
async def generate_text(item: Item):
# return {"response": generate(item)}
return {"response": generate(item, model, tokenizer, device)}
@app.get("/")
async def generate_text_root(item: Item):
return {"response": "try entry point: /generate/"}