Create app.py
Browse files
app.py
CHANGED
@@ -48,21 +48,21 @@ def prepare_data(temp_text, audio_prompt):
|
|
48 |
example_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
|
49 |
return example_embeddings
|
50 |
|
51 |
-
def generate_gpt4_response(user_text, print_output=False):
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
|
64 |
-
|
65 |
-
|
66 |
|
67 |
|
68 |
def predict(temp_text, temp_audio, record_audio_prompt, prompt_text):
|
@@ -71,7 +71,8 @@ def predict(temp_text, temp_audio, record_audio_prompt, prompt_text):
|
|
71 |
else:
|
72 |
audio_prompt = record_audio_prompt
|
73 |
|
74 |
-
text = generate_gpt4_response(prompt_text)
|
|
|
75 |
embeddings=prepare_data(temp_text, audio_prompt)
|
76 |
inputs = processor(text=text, return_tensors="pt")
|
77 |
spectrogram = model.generate_speech(inputs["input_ids"], embeddings)
|
|
|
48 |
example_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
|
49 |
return example_embeddings
|
50 |
|
51 |
+
# def generate_gpt4_response(user_text, print_output=False):
|
52 |
+
# """
|
53 |
+
# Query OpenAI GPT-4 for the specific key and get back a response
|
54 |
+
# :type user_text: str the user's text to query for
|
55 |
+
# :type print_output: boolean whether or not to print the raw output JSON
|
56 |
+
# """
|
57 |
+
# message=[{"role": "user", "content": user_text+'in just 2 very small sentences'}]
|
58 |
+
# completions = ai.ChatCompletion.create(
|
59 |
+
# model="gpt-4",
|
60 |
+
# messages=message,
|
61 |
+
# max_tokens=250
|
62 |
+
# )
|
63 |
|
64 |
+
# # Return the first choice's text
|
65 |
+
# return completions['choices'][0]['message']['content']
|
66 |
|
67 |
|
68 |
def predict(temp_text, temp_audio, record_audio_prompt, prompt_text):
|
|
|
71 |
else:
|
72 |
audio_prompt = record_audio_prompt
|
73 |
|
74 |
+
# text = generate_gpt4_response(prompt_text)
|
75 |
+
text=prompt_text
|
76 |
embeddings=prepare_data(temp_text, audio_prompt)
|
77 |
inputs = processor(text=text, return_tensors="pt")
|
78 |
spectrogram = model.generate_speech(inputs["input_ids"], embeddings)
|