DDP / app.py
Prasada's picture
Update app.py
31ab4d4
raw
history blame
2.15 kB
import gradio as gr
import librosa
import numpy as np
import torch
import os
import torch
from speechbrain.pretrained import EncoderClassifier
from transformers import AutoProcessor, AutoModelForTextToSpectrogram, SpeechT5HifiGan
processor = AutoProcessor.from_pretrained("Prasada/speecht5_tts_voxpopuli_nl")
model = AutoModelForTextToSpectrogram.from_pretrained("Prasada/speecht5_tts_voxpopuli_nl")
vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan")
spk_model_name = "speechbrain/spkrec-xvect-voxceleb"
device = "cuda" if torch.cuda.is_available() else "cpu"
speaker_model = EncoderClassifier.from_hparams(
source=spk_model_name,
run_opts={"device": device},
savedir=os.path.join("/tmp", spk_model_name))
def create_speaker_embedding(waveform):
with torch.no_grad():
speaker_embeddings = speaker_model.encode_batch(torch.tensor(waveform))
speaker_embeddings = torch.nn.functional.normalize(speaker_embeddings, dim=2)
speaker_embeddings = speaker_embeddings.squeeze().cpu().numpy()
return speaker_embeddings
def prepare_data(temp_text, temp_audio):
rate, audio_data = temp_audio
example = processor(
text=temp_text,
audio_target=audio_data,
sampling_rate=16000,
return_attention_mask=False,)
example["speaker_embeddings"] = create_speaker_embedding(audio_data)
example_embeddings = torch.tensor(example["speaker_embeddings"]).unsqueeze(0)
return example_embeddings
def predict(temp_text, temp_audio, text):
text = text
embeddings=prepare_data(temp_text, temp_audio)
inputs = processor(text=text, return_tensors="pt")
spectrogram = model.generate_speech(inputs["input_ids"], embeddings)
with torch.no_grad():
speech = vocoder(spectrogram)
speech = (speech.numpy() * 32767).astype(np.int16)
return (16000, speech)
gr.Interface(
fn=predict,
inputs=[
gr.Text(label="Template Text"),
gr.Audio(label="Template Speech", type="numpy"),
gr.Text(label="Input Text"),
],
outputs=[
gr.Audio(label="Generated Speech", type="numpy"),
],
).launch()