File size: 34,845 Bytes
ec5288c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
{
  "nbformat": 4,
  "nbformat_minor": 0,
  "metadata": {
    "colab": {
      "provenance": [],
      "machine_shape": "hm",
      "gpuType": "A100"
    },
    "kernelspec": {
      "name": "python3",
      "display_name": "Python 3"
    },
    "language_info": {
      "name": "python"
    },
    "accelerator": "GPU"
  },
  "cells": [
    {
      "cell_type": "code",
      "execution_count": 7,
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "G6BvseJ-0VwS",
        "outputId": "72cafdf8-dd7b-4412-a9bc-2cfcebfb6949"
      },
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "--2023-11-03 11:10:34--  https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt\n",
            "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.110.133, ...\n",
            "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n",
            "HTTP request sent, awaiting response... 200 OK\n",
            "Length: 1115394 (1.1M) [text/plain]\n",
            "Saving to: ‘input.txt’\n",
            "\n",
            "input.txt           100%[===================>]   1.06M  --.-KB/s    in 0.02s   \n",
            "\n",
            "2023-11-03 11:10:35 (48.3 MB/s) - ‘input.txt’ saved [1115394/1115394]\n",
            "\n"
          ]
        }
      ],
      "source": [
        "!wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "with open('input.txt', 'r', encoding='utf-8') as f:\n",
        "    text = f.read()"
      ],
      "metadata": {
        "id": "pxZym4QU1mCq"
      },
      "execution_count": 11,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "import torch\n",
        "import torch.nn as nn\n",
        "from torch.nn import functional as F\n",
        "\n",
        "# hyperparameters\n",
        "batch_size = 16 # how many independent sequences will we process in parallel?\n",
        "block_size = 32 # what is the maximum context length for predictions?\n",
        "max_iters = 5000\n",
        "eval_interval = 100\n",
        "learning_rate = 1e-3\n",
        "device = 'cuda' if torch.cuda.is_available() else 'cpu'\n",
        "eval_iters = 200\n",
        "n_embd = 64\n",
        "n_head = 4\n",
        "n_layer = 4\n",
        "dropout = 0.0\n",
        "\n",
        "torch.manual_seed(1337)\n",
        "\n",
        "\n",
        "# here are all the unique characters that occur in this text\n",
        "chars = sorted(list(set(text)))\n",
        "vocab_size = len(chars)\n",
        "# create a mapping from characters to integers\n",
        "stoi = { ch:i for i,ch in enumerate(chars) }\n",
        "itos = { i:ch for i,ch in enumerate(chars) }\n",
        "encode = lambda s: [stoi[c] for c in s] # encoder: take a string, output a list of integers\n",
        "decode = lambda l: ''.join([itos[i] for i in l]) # decoder: take a list of integers, output a string\n",
        "\n",
        "# Train and test splits\n",
        "data = torch.tensor(encode(text), dtype=torch.long)\n",
        "n = int(0.9*len(data)) # first 90% will be train, rest val\n",
        "train_data = data[:n]\n",
        "val_data = data[n:]\n",
        "\n",
        "# data loading\n",
        "def get_batch(split):\n",
        "    # generate a small batch of data of inputs x and targets y\n",
        "    data = train_data if split == 'train' else val_data\n",
        "    ix = torch.randint(len(data) - block_size, (batch_size,))\n",
        "    x = torch.stack([data[i:i+block_size] for i in ix])\n",
        "    y = torch.stack([data[i+1:i+block_size+1] for i in ix])\n",
        "    x, y = x.to(device), y.to(device)\n",
        "    return x, y\n",
        "\n",
        "@torch.no_grad()\n",
        "def estimate_loss():\n",
        "    out = {}\n",
        "    model.eval()\n",
        "    for split in ['train', 'val']:\n",
        "        losses = torch.zeros(eval_iters)\n",
        "        for k in range(eval_iters):\n",
        "            X, Y = get_batch(split)\n",
        "            logits, loss = model(X, Y)\n",
        "            losses[k] = loss.item()\n",
        "        out[split] = losses.mean()\n",
        "    model.train()\n",
        "    return out\n",
        "\n",
        "class Head(nn.Module):\n",
        "    \"\"\" one head of self-attention \"\"\"\n",
        "\n",
        "    def __init__(self, head_size):\n",
        "        super().__init__()\n",
        "        self.key = nn.Linear(n_embd, head_size, bias=False)\n",
        "        self.query = nn.Linear(n_embd, head_size, bias=False)\n",
        "        self.value = nn.Linear(n_embd, head_size, bias=False)\n",
        "        self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))\n",
        "\n",
        "        self.dropout = nn.Dropout(dropout)\n",
        "\n",
        "    def forward(self, x):\n",
        "        B,T,C = x.shape\n",
        "        k = self.key(x)   # (B,T,C)\n",
        "        q = self.query(x) # (B,T,C)\n",
        "        # compute attention scores (\"affinities\")\n",
        "        wei = q @ k.transpose(-2,-1) * C**-0.5 # (B, T, C) @ (B, C, T) -> (B, T, T)\n",
        "        wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf')) # (B, T, T)\n",
        "        wei = F.softmax(wei, dim=-1) # (B, T, T)\n",
        "        wei = self.dropout(wei)\n",
        "        # perform the weighted aggregation of the values\n",
        "        v = self.value(x) # (B,T,C)\n",
        "        out = wei @ v # (B, T, T) @ (B, T, C) -> (B, T, C)\n",
        "        return out\n",
        "\n",
        "class MultiHeadAttention(nn.Module):\n",
        "    \"\"\" multiple heads of self-attention in parallel \"\"\"\n",
        "\n",
        "    def __init__(self, num_heads, head_size):\n",
        "        super().__init__()\n",
        "        self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)])\n",
        "        self.proj = nn.Linear(n_embd, n_embd)\n",
        "        self.dropout = nn.Dropout(dropout)\n",
        "\n",
        "    def forward(self, x):\n",
        "        out = torch.cat([h(x) for h in self.heads], dim=-1)\n",
        "        out = self.dropout(self.proj(out))\n",
        "        return out\n",
        "\n",
        "class FeedFoward(nn.Module):\n",
        "    \"\"\" a simple linear layer followed by a non-linearity \"\"\"\n",
        "\n",
        "    def __init__(self, n_embd):\n",
        "        super().__init__()\n",
        "        self.net = nn.Sequential(\n",
        "            nn.Linear(n_embd, 4 * n_embd),\n",
        "            nn.ReLU(),\n",
        "            nn.Linear(4 * n_embd, n_embd),\n",
        "            nn.Dropout(dropout),\n",
        "        )\n",
        "\n",
        "    def forward(self, x):\n",
        "        return self.net(x)\n",
        "\n",
        "class Block(nn.Module):\n",
        "    \"\"\" Transformer block: communication followed by computation \"\"\"\n",
        "\n",
        "    def __init__(self, n_embd, n_head):\n",
        "        # n_embd: embedding dimension, n_head: the number of heads we'd like\n",
        "        super().__init__()\n",
        "        head_size = n_embd // n_head\n",
        "        self.sa = MultiHeadAttention(n_head, head_size)\n",
        "        self.ffwd = FeedFoward(n_embd)\n",
        "        self.ln1 = nn.LayerNorm(n_embd)\n",
        "        self.ln2 = nn.LayerNorm(n_embd)\n",
        "\n",
        "    def forward(self, x):\n",
        "        x = x + self.sa(self.ln1(x))\n",
        "        x = x + self.ffwd(self.ln2(x))\n",
        "        return x\n",
        "\n",
        "# super simple bigram model\n",
        "class BigramLanguageModel(nn.Module):\n",
        "\n",
        "    def __init__(self):\n",
        "        super().__init__()\n",
        "        # each token directly reads off the logits for the next token from a lookup table\n",
        "        self.token_embedding_table = nn.Embedding(vocab_size, n_embd)\n",
        "        self.position_embedding_table = nn.Embedding(block_size, n_embd)\n",
        "        self.blocks = nn.Sequential(*[Block(n_embd, n_head=n_head) for _ in range(n_layer)])\n",
        "        self.ln_f = nn.LayerNorm(n_embd) # final layer norm\n",
        "        self.lm_head = nn.Linear(n_embd, vocab_size)\n",
        "\n",
        "    def forward(self, idx, targets=None):\n",
        "        B, T = idx.shape\n",
        "\n",
        "        # idx and targets are both (B,T) tensor of integers\n",
        "        tok_emb = self.token_embedding_table(idx) # (B,T,C)\n",
        "        pos_emb = self.position_embedding_table(torch.arange(T, device=device)) # (T,C)\n",
        "        x = tok_emb + pos_emb # (B,T,C)\n",
        "        x = self.blocks(x) # (B,T,C)\n",
        "        x = self.ln_f(x) # (B,T,C)\n",
        "        logits = self.lm_head(x) # (B,T,vocab_size)\n",
        "\n",
        "        if targets is None:\n",
        "            loss = None\n",
        "        else:\n",
        "            B, T, C = logits.shape\n",
        "            logits = logits.view(B*T, C)\n",
        "            targets = targets.view(B*T)\n",
        "            loss = F.cross_entropy(logits, targets)\n",
        "\n",
        "        return logits, loss\n",
        "\n",
        "    def generate(self, idx, max_new_tokens):\n",
        "        # idx is (B, T) array of indices in the current context\n",
        "        for _ in range(max_new_tokens):\n",
        "            # crop idx to the last block_size tokens\n",
        "            idx_cond = idx[:, -block_size:]\n",
        "            # get the predictions\n",
        "            logits, loss = self(idx_cond)\n",
        "            # focus only on the last time step\n",
        "            logits = logits[:, -1, :] # becomes (B, C)\n",
        "            # apply softmax to get probabilities\n",
        "            probs = F.softmax(logits, dim=-1) # (B, C)\n",
        "            # sample from the distribution\n",
        "            idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)\n",
        "            # append sampled index to the running sequence\n",
        "            idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)\n",
        "        return idx\n",
        "\n",
        "model = BigramLanguageModel()\n",
        "m = model.to(device)\n",
        "# print the number of parameters in the model\n",
        "print(sum(p.numel() for p in m.parameters())/1e6, 'M parameters')\n",
        "\n",
        "# create a PyTorch optimizer\n",
        "optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)\n",
        "\n",
        "for iter in range(max_iters):\n",
        "\n",
        "    # every once in a while evaluate the loss on train and val sets\n",
        "    if iter % eval_interval == 0 or iter == max_iters - 1:\n",
        "        losses = estimate_loss()\n",
        "        print(f\"step {iter}: train loss {losses['train']:.4f}, val loss {losses['val']:.4f}\")\n",
        "\n",
        "    # sample a batch of data\n",
        "    xb, yb = get_batch('train')\n",
        "\n",
        "    # evaluate the loss\n",
        "    logits, loss = model(xb, yb)\n",
        "    optimizer.zero_grad(set_to_none=True)\n",
        "    loss.backward()\n",
        "    optimizer.step()\n",
        "\n",
        "# generate from the model\n",
        "context = torch.zeros((1, 1), dtype=torch.long, device=device)\n",
        "print(decode(m.generate(context, max_new_tokens=2000)[0].tolist()))\n"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "U_mrE9Vd10Ab",
        "outputId": "f443c391-fd7f-4c2d-dd0d-72ef25849ef6"
      },
      "execution_count": 12,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "0.209729 M parameters\n",
            "step 0: train loss 4.4116, val loss 4.4022\n",
            "step 100: train loss 2.6568, val loss 2.6670\n",
            "step 200: train loss 2.5091, val loss 2.5060\n",
            "step 300: train loss 2.4199, val loss 2.4337\n",
            "step 400: train loss 2.3500, val loss 2.3563\n",
            "step 500: train loss 2.2961, val loss 2.3126\n",
            "step 600: train loss 2.2408, val loss 2.2501\n",
            "step 700: train loss 2.2053, val loss 2.2187\n",
            "step 800: train loss 2.1636, val loss 2.1870\n",
            "step 900: train loss 2.1226, val loss 2.1483\n",
            "step 1000: train loss 2.1017, val loss 2.1283\n",
            "step 1100: train loss 2.0683, val loss 2.1174\n",
            "step 1200: train loss 2.0376, val loss 2.0798\n",
            "step 1300: train loss 2.0256, val loss 2.0645\n",
            "step 1400: train loss 1.9919, val loss 2.0362\n",
            "step 1500: train loss 1.9696, val loss 2.0304\n",
            "step 1600: train loss 1.9625, val loss 2.0470\n",
            "step 1700: train loss 1.9402, val loss 2.0119\n",
            "step 1800: train loss 1.9085, val loss 1.9957\n",
            "step 1900: train loss 1.9080, val loss 1.9869\n",
            "step 2000: train loss 1.8834, val loss 1.9941\n",
            "step 2100: train loss 1.8727, val loss 1.9758\n",
            "step 2200: train loss 1.8585, val loss 1.9622\n",
            "step 2300: train loss 1.8537, val loss 1.9503\n",
            "step 2400: train loss 1.8419, val loss 1.9424\n",
            "step 2500: train loss 1.8153, val loss 1.9407\n",
            "step 2600: train loss 1.8267, val loss 1.9374\n",
            "step 2700: train loss 1.8126, val loss 1.9344\n",
            "step 2800: train loss 1.8054, val loss 1.9230\n",
            "step 2900: train loss 1.8045, val loss 1.9339\n",
            "step 3000: train loss 1.7963, val loss 1.9243\n",
            "step 3100: train loss 1.7691, val loss 1.9208\n",
            "step 3200: train loss 1.7506, val loss 1.9092\n",
            "step 3300: train loss 1.7548, val loss 1.9038\n",
            "step 3400: train loss 1.7582, val loss 1.8960\n",
            "step 3500: train loss 1.7376, val loss 1.8934\n",
            "step 3600: train loss 1.7232, val loss 1.8888\n",
            "step 3700: train loss 1.7280, val loss 1.8814\n",
            "step 3800: train loss 1.7221, val loss 1.8951\n",
            "step 3900: train loss 1.7228, val loss 1.8789\n",
            "step 4000: train loss 1.7168, val loss 1.8635\n",
            "step 4100: train loss 1.7168, val loss 1.8798\n",
            "step 4200: train loss 1.7088, val loss 1.8672\n",
            "step 4300: train loss 1.6995, val loss 1.8501\n",
            "step 4400: train loss 1.7096, val loss 1.8686\n",
            "step 4500: train loss 1.6907, val loss 1.8546\n",
            "step 4600: train loss 1.6868, val loss 1.8348\n",
            "step 4700: train loss 1.6786, val loss 1.8346\n",
            "step 4800: train loss 1.6659, val loss 1.8445\n",
            "step 4900: train loss 1.6711, val loss 1.8384\n",
            "step 4999: train loss 1.6630, val loss 1.8230\n",
            "\n",
            "ROMEO:\n",
            "But you far you\n",
            "my swap with thus; come hath I uD\n",
            "If sleemition of where's granded\n",
            "Of their of tout the gortune upwon alond, liege man to is Iell this surpe\n",
            "And than sleue thus mind, his by blow,\n",
            "Virdty toward butied, Ditire spresiss with thou some not.\n",
            "\n",
            "LORIO:\n",
            "I am part\n",
            "But thou sging them but\n",
            "shat secondes morry thou sovore.\n",
            "\n",
            "ISABUS:\n",
            "What art sade but hither, thange e'en,\n",
            "Protes as kingle me; an your tords whom are Ineal.\n",
            "\n",
            "MENENIUS:\n",
            "But little sweet, hom, foust cerfort;\n",
            "Winth hing diend enirs' tompy beds sick ways!\n",
            "What curforself this grace. Won, passes us.\n",
            "\n",
            "BUCKINGHABY MARD:\n",
            "Mether star: keep it any head which\n",
            "He tall devioly that, out that confer old.\n",
            "Our thy dears time.\n",
            "Nay, the fragoly, pair, of new\n",
            "my father, my lip Backnoward:\n",
            "God therring for respide\n",
            "What colvery, teminelyord, I mast,\n",
            "While us that such differs I'll that confect I come,\n",
            "But; man.\n",
            "\n",
            "VOLUMNIO:\n",
            "Ontread confail with me. Humser dipporbried answeraw is codal one,\n",
            "Onjestion, not or cheavess ensty with.\n",
            "\n",
            "GLOUCESTER:\n",
            "\n",
            "HENRY Mess to Lies?\n",
            "Stand and these beguare youf stile that than war\n",
            "offity are, I usquesch\n",
            "Frown movhapty not duke with you addom\n",
            "grack prowd--lost\n",
            "But but they worse is senst my crunne undolier. But, beauts pruntaly; I stoll'ct my nor Murder, I sot, though who speak\n",
            "Your bout told-man rathing if anyshal\n",
            "epitence, tirre no the said he's,\n",
            "Andis frultifs. what his lide? That mirdy this dudgetions?\n",
            "\n",
            "KING ARINIA:\n",
            "I let holt not sucKether,\n",
            "Whither, efore But lord: I, beget because at that his say\n",
            "as to brought grave a donesmer all nobe.\n",
            "\n",
            "BUCKINGHUMBY:\n",
            "Which forgeled! Came; nor thereforn's fiends strefet.\n",
            "\n",
            "PLORIA:\n",
            "Yet to Capprohning, that brird\n",
            "of say mover a desrick.\n",
            "\n",
            "MO\n",
            "stompars, God the\n",
            "citchard is high.\n",
            "\n",
            "Seth Second Methere:\n",
            "Marrmat I unmale the bretcius unfoect that I would back where own thy lurges\n",
            "And, iffillimorture:\n",
            "As thou twand, York these that high praut.\n",
            "Plafe merprates sure dread with her,\n",
            "At not your must I suchon? too prant!\n",
            "O 'hiles clight the bleave is graved before\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# generate from the model\n",
        "context = torch.zeros((1, 1), dtype=torch.long, device=device)\n",
        "print(decode(m.generate(context, max_new_tokens=2000)[0].tolist()))"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "M0qIA2GK2qzI",
        "outputId": "86126a68-17b1-4171-920a-1d2df6fa3f1a"
      },
      "execution_count": 13,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\n",
            "And thou to lesserve his his know'st broy by A towe than or fuch dight none worthy'st countinne, congess\n",
            "our ire Iname's marriatate the entrity?\n",
            "\n",
            "COMIOLUS:\n",
            "Yet there me your let thy by courtary, own but I cannot, to\n",
            "you.\n",
            "\n",
            "MOth Osque, while and nett; pity, brow umput;\n",
            "He betwered's prettedy if not you arter,\n",
            "But woman furner his good me to ambled thy follows\n",
            "Gents for you daying this distend and he but.\n",
            "\n",
            "COMINANUS:\n",
            "But you know wish the wear? whoe not to breave maste gate?\n",
            "Not, now you read own. Lo-honour shoes\n",
            "honordore vilibert.\n",
            "\n",
            "ARTOS:\n",
            "Nay, as Is theen, God\n",
            "Were I saying cose\n",
            "Will there's upon and tools.\n",
            "\n",
            "HORSIO:\n",
            "Pomfort life?\n",
            "Whereform make comps hersed, my what away,\n",
            "Go'st Your haste entens, and succe?\n",
            "\n",
            "LORD RIARENCE:\n",
            "Fies my like, wifch a my nobt.\n",
            "And!\n",
            "And ways. Whithing death.\n",
            "\n",
            "CORIOLUMNO:\n",
            "It must I have grawits.-\n",
            "Ris Gomisty yor then thin dot this no all-donged,\n",
            "But quarry the latter: Have me the betime twooke steed to blood\n",
            "That his rysour grower-foldds: bnot Plond,\n",
            "By that all wittore old the malt our liight.\n",
            "Would for not\n",
            "And sabet I sout ofing more in must.\n",
            "\n",
            "MENENIUS:\n",
            "Gor low your I standed\n",
            "To heavy:\n",
            "While to caid your inswoes!\n",
            "Thrhing the princlusior lurmeng,\n",
            "To Whie! entred mean the not, sare.\n",
            "\n",
            "BRUTUS:\n",
            "Is my partend him, if Is verys be,\n",
            "Whim you longs,\n",
            "Say, his me. Murselets; not with is most.\n",
            "\n",
            "JOLINA:\n",
            "That it where that thluse too the hath'd\n",
            "unsomed of our heavis'd?\n",
            "\n",
            "So his were Clamind:\n",
            "Ounly mistry's soul\n",
            "To once myser flow\n",
            "Which, then, whet must I as not drums as the ouch are\n",
            "burnse contreased and in Comintity?\n",
            "\n",
            "Mistray is I curliented:\n",
            "Thou herew bottust, How lad you blist a wear's art?\n",
            "What the vave--batta thing with\n",
            "that his my urtusaed and as mine, thus not,\n",
            "May your pohed me mhalt livy very\n",
            "But I sham I ham kitse, pean, for\n",
            "was, ewith woll heave in thou art, dlignt,\n",
            "Of fair Griward that remottes must;\n",
            "Cadyfore the not lords not, I say's gener which of your rame? Istand my hearth\n",
            "And thou alt nenget that shame\n",
            "She with them kinderire it put this\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "prompt = \"Once upon a time\"\n",
        "context = torch.tensor(encode(prompt), dtype=torch.long, device=device).view(1, -1)\n",
        "print(decode(m.generate(context, max_new_tokens=200)[0].tolist()))"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "Na0SThjv5-iz",
        "outputId": "c649c8ad-42fe-4a77-a219-9dcb1857a9c0"
      },
      "execution_count": 14,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Once upon a times peacts mother saclaves is 'Then of my tonguen,\n",
            "Thus are been\n",
            "My my behot prilatte, what you brot,\n",
            "Speeke there is my bud the be, 'smandion from me:\n",
            "And the barttes, rechard, where capuse,\n",
            "Rentent, I\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "\n",
        "# Save the model\n",
        "torch.save(m.state_dict(), 'GPT_Shakespeare_language_model.pth')"
      ],
      "metadata": {
        "id": "sfmRYo9h6B24"
      },
      "execution_count": 15,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# Load the model\n",
        "loaded_model = BigramLanguageModel()  # Initialize an instance of your model\n",
        "loaded_model.load_state_dict(torch.load('GPT_Shakespeare_language_model.pth'))\n",
        "loaded_model.to(device).eval()  # Set the model to evaluation mode"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "xO9JefxH6KHS",
        "outputId": "d7f0191c-4e02-4ed7-ff4b-b6f25a538fe5"
      },
      "execution_count": 17,
      "outputs": [
        {
          "output_type": "execute_result",
          "data": {
            "text/plain": [
              "BigramLanguageModel(\n",
              "  (token_embedding_table): Embedding(65, 64)\n",
              "  (position_embedding_table): Embedding(32, 64)\n",
              "  (blocks): Sequential(\n",
              "    (0): Block(\n",
              "      (sa): MultiHeadAttention(\n",
              "        (heads): ModuleList(\n",
              "          (0-3): 4 x Head(\n",
              "            (key): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (query): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (value): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (dropout): Dropout(p=0.0, inplace=False)\n",
              "          )\n",
              "        )\n",
              "        (proj): Linear(in_features=64, out_features=64, bias=True)\n",
              "        (dropout): Dropout(p=0.0, inplace=False)\n",
              "      )\n",
              "      (ffwd): FeedFoward(\n",
              "        (net): Sequential(\n",
              "          (0): Linear(in_features=64, out_features=256, bias=True)\n",
              "          (1): ReLU()\n",
              "          (2): Linear(in_features=256, out_features=64, bias=True)\n",
              "          (3): Dropout(p=0.0, inplace=False)\n",
              "        )\n",
              "      )\n",
              "      (ln1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)\n",
              "      (ln2): LayerNorm((64,), eps=1e-05, elementwise_affine=True)\n",
              "    )\n",
              "    (1): Block(\n",
              "      (sa): MultiHeadAttention(\n",
              "        (heads): ModuleList(\n",
              "          (0-3): 4 x Head(\n",
              "            (key): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (query): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (value): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (dropout): Dropout(p=0.0, inplace=False)\n",
              "          )\n",
              "        )\n",
              "        (proj): Linear(in_features=64, out_features=64, bias=True)\n",
              "        (dropout): Dropout(p=0.0, inplace=False)\n",
              "      )\n",
              "      (ffwd): FeedFoward(\n",
              "        (net): Sequential(\n",
              "          (0): Linear(in_features=64, out_features=256, bias=True)\n",
              "          (1): ReLU()\n",
              "          (2): Linear(in_features=256, out_features=64, bias=True)\n",
              "          (3): Dropout(p=0.0, inplace=False)\n",
              "        )\n",
              "      )\n",
              "      (ln1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)\n",
              "      (ln2): LayerNorm((64,), eps=1e-05, elementwise_affine=True)\n",
              "    )\n",
              "    (2): Block(\n",
              "      (sa): MultiHeadAttention(\n",
              "        (heads): ModuleList(\n",
              "          (0-3): 4 x Head(\n",
              "            (key): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (query): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (value): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (dropout): Dropout(p=0.0, inplace=False)\n",
              "          )\n",
              "        )\n",
              "        (proj): Linear(in_features=64, out_features=64, bias=True)\n",
              "        (dropout): Dropout(p=0.0, inplace=False)\n",
              "      )\n",
              "      (ffwd): FeedFoward(\n",
              "        (net): Sequential(\n",
              "          (0): Linear(in_features=64, out_features=256, bias=True)\n",
              "          (1): ReLU()\n",
              "          (2): Linear(in_features=256, out_features=64, bias=True)\n",
              "          (3): Dropout(p=0.0, inplace=False)\n",
              "        )\n",
              "      )\n",
              "      (ln1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)\n",
              "      (ln2): LayerNorm((64,), eps=1e-05, elementwise_affine=True)\n",
              "    )\n",
              "    (3): Block(\n",
              "      (sa): MultiHeadAttention(\n",
              "        (heads): ModuleList(\n",
              "          (0-3): 4 x Head(\n",
              "            (key): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (query): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (value): Linear(in_features=64, out_features=16, bias=False)\n",
              "            (dropout): Dropout(p=0.0, inplace=False)\n",
              "          )\n",
              "        )\n",
              "        (proj): Linear(in_features=64, out_features=64, bias=True)\n",
              "        (dropout): Dropout(p=0.0, inplace=False)\n",
              "      )\n",
              "      (ffwd): FeedFoward(\n",
              "        (net): Sequential(\n",
              "          (0): Linear(in_features=64, out_features=256, bias=True)\n",
              "          (1): ReLU()\n",
              "          (2): Linear(in_features=256, out_features=64, bias=True)\n",
              "          (3): Dropout(p=0.0, inplace=False)\n",
              "        )\n",
              "      )\n",
              "      (ln1): LayerNorm((64,), eps=1e-05, elementwise_affine=True)\n",
              "      (ln2): LayerNorm((64,), eps=1e-05, elementwise_affine=True)\n",
              "    )\n",
              "  )\n",
              "  (ln_f): LayerNorm((64,), eps=1e-05, elementwise_affine=True)\n",
              "  (lm_head): Linear(in_features=64, out_features=65, bias=True)\n",
              ")"
            ]
          },
          "metadata": {},
          "execution_count": 17
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# generate from the model\n",
        "context = torch.zeros((1, 1), dtype=torch.long, device=device)\n",
        "print(decode(loaded_model.generate(context, max_new_tokens=2000)[0].tolist()))"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "m46OnNXq6PAV",
        "outputId": "e547525f-98c0-4355-92ef-559f6c2ba238"
      },
      "execution_count": 18,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "\n",
            "Forntlefires, love the done, or all love tears\n",
            "That braud the strough.\n",
            "\n",
            "BUCHNIO:\n",
            "Is\n",
            "For that I hat deam throve? we parrlignos;\n",
            "My bregain minousiner mile into the doth,\n",
            "Warwien not his day hath;\n",
            "Whose basy touther ploudde metornies'drey would be themseremes to have\n",
            "You good accarm, menot wtoo cown:\n",
            "Is have mostil\n",
            "Before prunces.\n",
            "\n",
            "Speaking A-dught:\n",
            "Whow 'sile her fry hath acvionce,\n",
            "Your cange, side of-day; this I seep!\n",
            "Aher approve; I\n",
            "drumber, any till amberd, come it suffet nexwarrans\n",
            "To hear you that what art thim for a dish! Whiler not some men;\n",
            "Hareth, I am broth, thenese oof.\n",
            "Croth before wortune's hande and if brote\n",
            "Come andmitation it. Tentess I what\n",
            "That ascess Weringmans, te us;\n",
            "And your Servant-thy moime, that whose.\n",
            "\n",
            "CORIOLANUS:\n",
            "Now, stay to the resmorn?\n",
            "\n",
            "CRANGE:\n",
            "It have pleave to some, for soul;\n",
            "He fatelly here that you, hesseliemes five oldince\n",
            "Our confolle, too you stay'd my being to't,\n",
            "My lord I am then most the knows doot hid-gress.\n",
            "\n",
            "KING RICHARD GDITH:\n",
            "As beconsure! So youil heart fear; and whilook my arm verpast,\n",
            "And staven to fathy down I vir all prace,\n",
            "And be betcasion your balt, to draying and the bottchmy,\n",
            "The griake must worse it. As I have owle well I who stray good.\n",
            "\n",
            "My anviusice: andress unthat fonds of oad;\n",
            "ne's eye the notraing and timer cimmman:\n",
            "Heth lain. What's is the castad,\n",
            "And their speake fatwort off.\n",
            "\n",
            "Shy:\n",
            "What marry; thysele, time onge,\n",
            "And by bown, merpety to to of crive thou secam.\n",
            "\n",
            "QUEEN VINCENTIO:\n",
            "How my bold; good poson\n",
            "I finly torthus.\n",
            "Our you if your aware watly sweet\n",
            "On all fair livishts thee our then plast banoting\n",
            "What have duckn, so\n",
            "them the hostfeive.\n",
            "\n",
            "HIRDIO:\n",
            "\n",
            "GLOUCERDIO:\n",
            "And all capure Toncant mack.\n",
            "\n",
            "CAPULET:\n",
            "O mean bodams'd my tone thy wralf thee wilth\n",
            "And rencrown prow my ear them lovery\n",
            "Coringlike hath in recond:\n",
            "You will you from of God their all and not mine:\n",
            "With doess be Sives?\n",
            "So regort it thy mart solued sgaft world of him,\n",
            "What'st in else agged namfutiol.\n",
            "\n",
            "ANGENO:\n",
            "For that it you briave lay to your unpalssi\n"
          ]
        }
      ]
    },
    {
      "cell_type": "code",
      "source": [],
      "metadata": {
        "id": "2GpnegQc8A9R"
      },
      "execution_count": null,
      "outputs": []
    }
  ]
}