Spaces:
Runtime error
Runtime error
Update Leaderboard
Browse files- __pycache__/app.cpython-311.pyc +0 -0
- __pycache__/constants.cpython-311.pyc +0 -0
- app.py +230 -28
- constants.py +31 -0
- leaderboard.jsonl +0 -0
__pycache__/app.cpython-311.pyc
ADDED
|
Binary file (19.4 kB). View file
|
|
|
__pycache__/constants.cpython-311.pyc
ADDED
|
Binary file (1.96 kB). View file
|
|
|
app.py
CHANGED
|
@@ -1,53 +1,255 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
| 3 |
|
|
|
|
| 4 |
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
['**Fluent Language**', 24.4, 24.4, 24.4, 21.3, 23.2, 21.2, 21.4, 20.8, 23.2, 21.5, 22.1, "[[1]](https://arxiv.org/abs/2310.18xxx)"],
|
| 13 |
-
['**Citation Addition**', 25.5, 25.3, 25.3, 22.8, 24.2, 21.7, 22.3, 21.3, 23.5, 21.7, 22.9, "[[1]](https://arxiv.org/abs/2310.18xxx)"],
|
| 14 |
-
['**Quotes Addition**', 27.5, 27.6, 27.1, 24.4, 26.7, 24.6, 24.9, 23.2, 26.4, 24.1, 25.5, "[[1]](https://arxiv.org/abs/2310.18xxx)"],
|
| 15 |
-
['**Adding Statistics**', 25.8, 26.0, 25.5, 23.1, 26.1, 23.6, 24.5, 22.4, 26.1, 23.8, 24.8, "[[1]](https://arxiv.org/abs/2310.18xxx)"]
|
| 16 |
-
]
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
-
# Create a DataFrame
|
| 22 |
-
DATA_OVERALL = pd.DataFrame(data, columns=columns)
|
| 23 |
-
DATA_OVERALL.sort_values(by=['WordPos Overall'], inplace=True, ascending=False)
|
| 24 |
|
| 25 |
with gr.Blocks() as demo:
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
with gr.Tabs():
|
| 33 |
|
| 34 |
-
with gr.TabItem('Overall'):
|
| 35 |
|
| 36 |
with gr.Row():
|
| 37 |
gr.Markdown('## Overall Leaderboard')
|
|
|
|
| 38 |
with gr.Row():
|
| 39 |
data_overall = gr.components.Dataframe(
|
| 40 |
-
DATA_OVERALL,
|
| 41 |
-
datatype=["markdown"] + ["number"] * len(DATA_OVERALL.columns) + ['markdown'],
|
| 42 |
type="pandas",
|
| 43 |
wrap=True,
|
| 44 |
interactive=False,
|
| 45 |
)
|
|
|
|
|
|
|
| 46 |
with gr.Row():
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
|
|
|
| 51 |
|
| 52 |
if __name__ == "__main__":
|
| 53 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import pandas as pd
|
| 3 |
+
import os
|
| 4 |
+
import itertools
|
| 5 |
+
from constants import metric_dict, tags, columns
|
| 6 |
|
| 7 |
+
# Download from github and load the data
|
| 8 |
|
| 9 |
+
# TODO: Download every x hours
|
| 10 |
+
def download_data(url = "https://github.com/Pranjal2041/GEO/GEO-Bench/leaderboard/leaderboard.jsonl", path = "leaderboard.jsonl"):
|
| 11 |
+
ret_code = os.system(f'wget {url} -O {path}_tmp')
|
| 12 |
+
if ret_code != 0:
|
| 13 |
+
return ret_code
|
| 14 |
+
os.system(f'mv {path}_tmp {path}')
|
| 15 |
+
return 0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
+
def search_leaderboard(df, queries):
|
| 18 |
+
# Assuming DATA_OVERALL is the DataFrame containing the leaderboard data
|
| 19 |
+
# filtered_data = df[df["Method"].str.contains(query, case=False, na=False)]
|
| 20 |
+
temp_pds = []
|
| 21 |
+
for query in queries:
|
| 22 |
+
temp_pds.append(df[df["Method"].str.contains(query, case=False, na=False)])
|
| 23 |
+
return pd.concat(temp_pds).drop_duplicates()
|
| 24 |
+
|
| 25 |
+
def search_tags_leaderboard(df, tag_blocks, queries):
|
| 26 |
+
return search_leaderboard(filter_tags(df, tag_blocks), queries)
|
| 27 |
+
|
| 28 |
+
def filter_tags(df, tag_blocks):
|
| 29 |
+
def fuzzy_in(x, y_set):
|
| 30 |
+
return any(x in z for z in y_set)
|
| 31 |
+
all_tags_sets = [set(tag.lower() for tag in tag_block) for tag_block in tag_blocks]
|
| 32 |
+
|
| 33 |
+
filtered_rows = [i for i, tags in enumerate(complete_dt['tags']) if all('any' in tag_set or any(fuzzy_in(tag.lower(), tag_set) for tag in tags) for tag_set in all_tags_sets)]
|
| 34 |
+
|
| 35 |
+
return prepare_complete_dt(df.iloc[filtered_rows])
|
| 36 |
+
|
| 37 |
+
def prepare_complete_dt(complete_dt):
|
| 38 |
+
data = []
|
| 39 |
+
DATA_OVERALL = complete_dt.copy()
|
| 40 |
+
for Method in set(complete_dt['Method']):
|
| 41 |
+
data.append([])
|
| 42 |
+
data[-1].append(Method)
|
| 43 |
+
for metric in metric_dict:
|
| 44 |
+
metric_val = metric_dict[metric]
|
| 45 |
+
data[-1].append(complete_dt[complete_dt['Method'] == Method][metric_val].mean())
|
| 46 |
+
data[-1].append(complete_dt[complete_dt['Method'] == Method]['source'].iloc[0])
|
| 47 |
+
DATA_OVERALL = pd.DataFrame(data, columns=columns)
|
| 48 |
+
try:
|
| 49 |
+
DATA_OVERALL.sort_values(by=['WordPos Overall'], inplace=True, ascending=False)
|
| 50 |
+
except: ...
|
| 51 |
+
return DATA_OVERALL
|
| 52 |
+
|
| 53 |
+
def format_df_for_leaderboard(df):
|
| 54 |
+
# The source column needs to be embedded directly into the Method column using appropriate markdown.
|
| 55 |
+
df['Method'] = df[['source', 'Method']].apply(lambda x: f'<a target="_blank" style="text-decoration: underline; color: #3571d7;" href="{x[0]}">{x[1]}</a>', axis=1)
|
| 56 |
+
# Convert all float metrics to 1 decimal
|
| 57 |
+
df_copy = df.copy()
|
| 58 |
+
for metric in metric_dict:
|
| 59 |
+
df_copy[metric] = df_copy[metric].apply(lambda x: float(f'{(100*x):.1f}'))
|
| 60 |
+
# drop the source column
|
| 61 |
+
return df_copy.drop(columns=['source'])
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
ret_code = 0
|
| 65 |
+
# ret_code = download_data()
|
| 66 |
+
if ret_code != 0:
|
| 67 |
+
print("Leaderboard Download failed")
|
| 68 |
+
|
| 69 |
+
complete_dt = pd.read_json('leaderboard.jsonl', lines=True, orient='records')
|
| 70 |
+
DATA_OVERALL = prepare_complete_dt(complete_dt)
|
| 71 |
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
with gr.Blocks() as demo:
|
| 74 |
+
|
| 75 |
+
demo_content = """
|
| 76 |
+
<style>
|
| 77 |
+
.badge-container {
|
| 78 |
+
text-align: center;
|
| 79 |
+
display: flex;
|
| 80 |
+
justify-content: center;
|
| 81 |
+
}
|
| 82 |
+
.badge {
|
| 83 |
+
margin: 1px;
|
| 84 |
+
}
|
| 85 |
+
</style>
|
| 86 |
+
<h1 style="text-align: center;">GEO-Bench Leaderboard</h1>
|
| 87 |
+
<div class="badge-container">
|
| 88 |
+
<a href="https://pranjal2041.github.io/geo/" class="badge">
|
| 89 |
+
<img src="https://img.shields.io/website?down_message=down&style=for-the-badge&up_message=up&url=https%3A%2F%2Fpranjal2041.github.io/geo/" alt="Website">
|
| 90 |
+
</a>
|
| 91 |
+
<a href="https://arxiv.org/abs/2310.18xxx" class="badge">
|
| 92 |
+
<img src="https://img.shields.io/badge/arXiv-2310.18xxx-red.svg?style=for-the-badge" alt="Arxiv Paper">
|
| 93 |
+
</a>
|
| 94 |
+
<a href="https://huggingface.co/datasets/Pranjal2041/geo-bench" class="badge">
|
| 95 |
+
<img src="https://img.shields.io/badge/Dataset-GEO-%2DBENCH-orange?style=for-the-badge" alt="Dataset">
|
| 96 |
+
</a>
|
| 97 |
+
<a href="https://github.com/Pranjal2041/GEO" class="badge">
|
| 98 |
+
<img src="https://img.shields.io/badge/Github-Code-green?style=for-the-badge" alt="Code">
|
| 99 |
+
</a>
|
| 100 |
+
</div>
|
| 101 |
+
<p>
|
| 102 |
+
- For benchmarking content optimization Methods for Generative Engines.<br>
|
| 103 |
+
- GEO-Bench evaluates Methods for optimizing website content to improve visibility in generative engine responses. Benchmark contains 10K queries across 9 datasets covering diverse domains and intents.<br>
|
| 104 |
+
- Refer to GEO paper for more <a href="https://arxiv.org/abs/2310.18xxx">details</a>
|
| 105 |
+
</p>
|
| 106 |
+
"""
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
gr.HTML(demo_content)
|
| 110 |
+
|
| 111 |
+
|
| 112 |
+
|
| 113 |
|
| 114 |
with gr.Tabs():
|
| 115 |
|
| 116 |
+
with gr.TabItem('Overall ๐'):
|
| 117 |
|
| 118 |
with gr.Row():
|
| 119 |
gr.Markdown('## Overall Leaderboard')
|
| 120 |
+
|
| 121 |
with gr.Row():
|
| 122 |
data_overall = gr.components.Dataframe(
|
| 123 |
+
format_df_for_leaderboard(DATA_OVERALL),
|
| 124 |
+
datatype=["markdown"] + ["number"] * (len(DATA_OVERALL.columns) - 2) + ['markdown'],
|
| 125 |
type="pandas",
|
| 126 |
wrap=True,
|
| 127 |
interactive=False,
|
| 128 |
)
|
| 129 |
+
# data_overall.
|
| 130 |
+
|
| 131 |
with gr.Row():
|
| 132 |
+
# search_bar = gr.Textbox(type="text", label="Search for a Method:")
|
| 133 |
+
search_bar = gr.Textbox(
|
| 134 |
+
placeholder=" ๐ Search for your Method (separate multiple queries with `,`) and press ENTER...",
|
| 135 |
+
show_label=False,
|
| 136 |
+
elem_id="search-bar",
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
def search_button_click(query):
|
| 140 |
+
filtered_data = search_leaderboard(DATA_OVERALL, [x.strip() for x in query.split(',')])
|
| 141 |
+
return format_df_for_leaderboard(filtered_data)
|
| 142 |
+
|
| 143 |
+
with gr.TabItem('Tag-Wise Results ๐'):
|
| 144 |
+
with gr.Row():
|
| 145 |
+
gr.Markdown(f"""
|
| 146 |
+
## Tag-Wise Results
|
| 147 |
+
- The following table shows the results for each tag.
|
| 148 |
+
- The tags are sorted in the order of their performance.
|
| 149 |
+
- The table is sorted in the order of the overall score.
|
| 150 |
+
""")
|
| 151 |
+
with gr.Row():
|
| 152 |
+
|
| 153 |
+
search_bar_tag = gr.Textbox(
|
| 154 |
+
placeholder=" ๐ Search for your Method (separate multiple queries with `,`) and press ENTER...",
|
| 155 |
+
show_label=False,
|
| 156 |
+
elem_id="search-bar",
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
def search_button_click(query):
|
| 160 |
+
filtered_data = search_leaderboard(DATA_OVERALL, [x.strip() for x in query.split(',')])
|
| 161 |
+
return format_df_for_leaderboard(filtered_data)
|
| 162 |
+
|
| 163 |
+
with gr.Row():
|
| 164 |
+
boxes = dict()
|
| 165 |
+
with gr.Column(min_width=320):
|
| 166 |
+
for tag in list(tags.keys())[:3]:
|
| 167 |
+
with gr.Box(elem_id="box-filter"):
|
| 168 |
+
boxes[tag] = gr.CheckboxGroup(
|
| 169 |
+
label=tag,
|
| 170 |
+
choices=tags[tag],
|
| 171 |
+
value=tags[tag],
|
| 172 |
+
interactive=True,
|
| 173 |
+
elem_id=f"filter-{tag}",
|
| 174 |
+
)
|
| 175 |
+
with gr.Column(min_width=320):
|
| 176 |
+
for tag in list(tags.keys())[4:]:
|
| 177 |
+
with gr.Box(elem_id="box-filter"):
|
| 178 |
+
boxes[tag] = gr.CheckboxGroup(
|
| 179 |
+
label=tag,
|
| 180 |
+
choices=tags[tag],
|
| 181 |
+
value=tags[tag],
|
| 182 |
+
interactive=True,
|
| 183 |
+
elem_id=f"filter-{tag}",
|
| 184 |
+
)
|
| 185 |
+
with gr.Row():
|
| 186 |
+
tag = list(tags.keys())[3]
|
| 187 |
+
with gr.Box(elem_id="box-filter"):
|
| 188 |
+
boxes[tag] = gr.CheckboxGroup(
|
| 189 |
+
label=tag,
|
| 190 |
+
choices=tags[tag],
|
| 191 |
+
value=tags[tag],
|
| 192 |
+
interactive=True,
|
| 193 |
+
elem_id=f"filter-{tag}",
|
| 194 |
+
)
|
| 195 |
+
with gr.Row():
|
| 196 |
+
data_tag_wise = gr.components.Dataframe(
|
| 197 |
+
format_df_for_leaderboard(DATA_OVERALL),
|
| 198 |
+
datatype=["markdown"] + ["number"] * (len(DATA_OVERALL.columns) - 2) + ['markdown'],
|
| 199 |
+
type="pandas",
|
| 200 |
+
wrap=True,
|
| 201 |
+
interactive=False,
|
| 202 |
+
)
|
| 203 |
+
def filter_tag_click(*boxes):
|
| 204 |
+
return format_df_for_leaderboard(filter_tags(complete_dt, list(boxes)))
|
| 205 |
+
def search_tag_click(query, *boxes):
|
| 206 |
+
return format_df_for_leaderboard(search_tags_leaderboard(complete_dt, list(boxes), [x.strip() for x in query.split(',')]))
|
| 207 |
+
for box in boxes:
|
| 208 |
+
boxes[box].change(fn=filter_tag_click, inputs=list(boxes.values()), outputs=data_tag_wise)
|
| 209 |
+
search_bar_tag.submit(fn=search_tag_click, inputs=[search_bar_tag] + list(boxes.values()), outputs=data_tag_wise)
|
| 210 |
+
|
| 211 |
+
with gr.TabItem('About GEO-bench ๐'):
|
| 212 |
+
with gr.Row():
|
| 213 |
+
gr.Markdown(f"""
|
| 214 |
+
## About GEO-bench
|
| 215 |
+
- GEO-bench is a benchmarking platform for content optimization Methods for generative engines.
|
| 216 |
+
- It is a part of the work released under [GEO](https://arxiv.org/abs/2310.18xxx)
|
| 217 |
+
- The benchmark comprises of 9 datasets, 7 of which were publicly available, while 2 have been released by us.
|
| 218 |
+
- Dataset can be downloaded from [here](huggingface.co/datasets/pranjal2041/geo-bench)""")
|
| 219 |
+
|
| 220 |
+
with gr.Row():
|
| 221 |
+
|
| 222 |
+
# Goal of benchmarking content optimization for generative engines
|
| 223 |
+
# Contains 10K carefully curated queries
|
| 224 |
+
# Queries are diverse and cover many domains/intents
|
| 225 |
+
# Annotated with tags/dimensions like domain, difficulty, etc.
|
| 226 |
+
# Above list in HTML format
|
| 227 |
+
gr.HTML(f"""
|
| 228 |
+
<h3>Key-Highlights of GEO-bench</h3>
|
| 229 |
+
<ul>
|
| 230 |
+
<li>Goal of benchmarking content optimization for generative engines</li>
|
| 231 |
+
<li>Contains 10K carefully curated queries</li>
|
| 232 |
+
<li>Queries are diverse and cover many domains/intents</li>
|
| 233 |
+
<li>Annotated with tags/dimensions like domain, difficulty, etc.</li>
|
| 234 |
+
</ul>
|
| 235 |
+
""")
|
| 236 |
+
|
| 237 |
+
# Benchmark Link:
|
| 238 |
+
# gr.Markdown(f"""### Benchmark Link: [GEO-bench](huggingface.co/datasets/pranjal2041/geo-bench)""")
|
| 239 |
+
|
| 240 |
+
# Info about tags and other statistics
|
| 241 |
+
|
| 242 |
+
|
| 243 |
+
with gr.TabItem('Submit ๐'):
|
| 244 |
+
with gr.Row():
|
| 245 |
+
gr.Markdown(f"""
|
| 246 |
+
## Submit
|
| 247 |
+
- To submit your Method, please check [here](github.com/Pranjal2041/GEO/GEO-Bench/leaderboard/Readme.md)""")
|
| 248 |
+
|
| 249 |
+
|
| 250 |
+
# Create a form to submit, the response should be sent to a google form
|
| 251 |
|
| 252 |
+
search_bar.submit(fn=search_button_click, inputs=search_bar, outputs=data_overall)
|
| 253 |
|
| 254 |
if __name__ == "__main__":
|
| 255 |
demo.launch()
|
constants.py
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# metrics = ['relevance_detailed', 'uniqueness_detailed', 'subjcount_detailed', 'follow_detailed', 'simple_wordpos', 'simple_pos', 'influence_detailed', 'subjective_score', 'diversity_detailed', 'simple_word', 'subjpos_detailed']
|
| 2 |
+
columns = ['Method', 'Word', 'Position', 'WordPos Overall', 'Rel.', 'Infl.', 'Unique', 'Div.', 'FollowUp', 'Pos.', 'Count', 'Subjective Average', 'source']
|
| 3 |
+
metric_dict = {
|
| 4 |
+
'Word': 'simple_word',
|
| 5 |
+
'Position': 'simple_pos',
|
| 6 |
+
'WordPos Overall': 'simple_wordpos',
|
| 7 |
+
'Rel.': 'relevance_detailed',
|
| 8 |
+
'Infl.': 'influence_detailed',
|
| 9 |
+
'Unique': 'uniqueness_detailed',
|
| 10 |
+
'Div.': 'diversity_detailed',
|
| 11 |
+
'FollowUp': 'follow_detailed',
|
| 12 |
+
'Pos.': 'subjpos_detailed',
|
| 13 |
+
'Count': 'subjcount_detailed',
|
| 14 |
+
'Subjective Average': 'subjective_score',
|
| 15 |
+
}
|
| 16 |
+
|
| 17 |
+
tags = {
|
| 18 |
+
"Difficulty Level": ["Simple", "Intermediate", "Complex", "Multi-faceted", "Open-ended", 'any'],
|
| 19 |
+
"Nature of Query": ["Informational", "Navigational", "Transactional", "Debate", "Opinion", "Comparison", "Instructional", "Descriptive", "Predictive", 'any'],
|
| 20 |
+
"Sensitivity": ["Sensitive", "Non-sensitive",'any'],
|
| 21 |
+
"Genre": [
|
| 22 |
+
"๐ญ Arts and Entertainment", "๐ Autos and Vehicles", "๐ Beauty and Fitness", "๐ Books and Literature", "๐ข Business and Industrial",
|
| 23 |
+
"๐ป Computers and Electronics", "๐ฐ Finance", "๐ Food and Drink", "๐ฎ Games", "๐ฅ Health", "๐จ Hobbies and Leisure", "๐ก Home and Garden",
|
| 24 |
+
"๐ Internet and Telecom", "๐ Jobs and Education", "๐๏ธ Law and Government", "๐ฐ News", "๐ฌ Online Communities", "๐ซ People and Society",
|
| 25 |
+
"๐พ Pets and Animals", "๐ก Real Estate", "๐ Reference", "๐ฌ Science", "๐ Shopping", "โฝ Sports", "โ๏ธ Travel",'any'
|
| 26 |
+
],
|
| 27 |
+
"Specific Topics": ["Physics", "Chemistry", "Biology", "Mathematics", "Computer Science", "Economics", 'any'],
|
| 28 |
+
"User Intent": ["๐ Research", "๐ฐ Purchase", "๐ Entertainment", "๐ Learning", "๐ Comparison", 'any'],
|
| 29 |
+
"Answer Type": ["Fact", "Opinion", "List", "Explanation", "Guide", "Comparison", "Prediction", 'any'],
|
| 30 |
+
}
|
| 31 |
+
|
leaderboard.jsonl
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|