import bisect import copy import math from collections import defaultdict from itertools import repeat, chain import numpy as np import torch import torch.utils.data import torchvision from PIL import Image from torch.utils.data.sampler import BatchSampler, Sampler from torch.utils.model_zoo import tqdm def _repeat_to_at_least(iterable, n): repeat_times = math.ceil(n / len(iterable)) repeated = chain.from_iterable(repeat(iterable, repeat_times)) return list(repeated) class GroupedBatchSampler(BatchSampler): """ Wraps another sampler to yield a mini-batch of indices. It enforces that the batch only contain elements from the same group. It also tries to provide mini-batches which follows an ordering which is as close as possible to the ordering from the original sampler. Args: sampler (Sampler): Base sampler. group_ids (list[int]): If the sampler produces indices in range [0, N), `group_ids` must be a list of `N` ints which contains the group id of each sample. The group ids must be a continuous set of integers starting from 0, i.e. they must be in the range [0, num_groups). batch_size (int): Size of mini-batch. """ def __init__(self, sampler, group_ids, batch_size): if not isinstance(sampler, Sampler): raise ValueError(f"sampler should be an instance of torch.utils.data.Sampler, but got sampler={sampler}") self.sampler = sampler self.group_ids = group_ids self.batch_size = batch_size def __iter__(self): buffer_per_group = defaultdict(list) samples_per_group = defaultdict(list) num_batches = 0 for idx in self.sampler: group_id = self.group_ids[idx] buffer_per_group[group_id].append(idx) samples_per_group[group_id].append(idx) if len(buffer_per_group[group_id]) == self.batch_size: yield buffer_per_group[group_id] num_batches += 1 del buffer_per_group[group_id] assert len(buffer_per_group[group_id]) < self.batch_size # now we have run out of elements that satisfy # the group criteria, let's return the remaining # elements so that the size of the sampler is # deterministic expected_num_batches = len(self) num_remaining = expected_num_batches - num_batches if num_remaining > 0: # for the remaining batches, take first the buffers with largest number # of elements for group_id, _ in sorted(buffer_per_group.items(), key=lambda x: len(x[1]), reverse=True): remaining = self.batch_size - len(buffer_per_group[group_id]) samples_from_group_id = _repeat_to_at_least(samples_per_group[group_id], remaining) buffer_per_group[group_id].extend(samples_from_group_id[:remaining]) assert len(buffer_per_group[group_id]) == self.batch_size yield buffer_per_group[group_id] num_remaining -= 1 if num_remaining == 0: break assert num_remaining == 0 def __len__(self): return len(self.sampler) // self.batch_size def _compute_aspect_ratios_slow(dataset, indices=None): print( "Your dataset doesn't support the fast path for " "computing the aspect ratios, so will iterate over " "the full dataset and load every image instead. " "This might take some time..." ) if indices is None: indices = range(len(dataset)) class SubsetSampler(Sampler): def __init__(self, indices): self.indices = indices def __iter__(self): return iter(self.indices) def __len__(self): return len(self.indices) sampler = SubsetSampler(indices) data_loader = torch.utils.data.DataLoader( dataset, batch_size=1, sampler=sampler, num_workers=14, # you might want to increase it for faster processing collate_fn=lambda x: x[0], ) aspect_ratios = [] with tqdm(total=len(dataset)) as pbar: for _i, (img, _) in enumerate(data_loader): pbar.update(1) height, width = img.shape[-2:] aspect_ratio = float(width) / float(height) aspect_ratios.append(aspect_ratio) return aspect_ratios def _compute_aspect_ratios_custom_dataset(dataset, indices=None): if indices is None: indices = range(len(dataset)) aspect_ratios = [] for i in indices: height, width = dataset.get_height_and_width(i) aspect_ratio = float(width) / float(height) aspect_ratios.append(aspect_ratio) return aspect_ratios def _compute_aspect_ratios_coco_dataset(dataset, indices=None): if indices is None: indices = range(len(dataset)) aspect_ratios = [] for i in indices: img_info = dataset.coco.imgs[dataset.ids[i]] aspect_ratio = float(img_info["width"]) / float(img_info["height"]) aspect_ratios.append(aspect_ratio) return aspect_ratios def _compute_aspect_ratios_voc_dataset(dataset, indices=None): if indices is None: indices = range(len(dataset)) aspect_ratios = [] for i in indices: # this doesn't load the data into memory, because PIL loads it lazily width, height = Image.open(dataset.images[i]).size aspect_ratio = float(width) / float(height) aspect_ratios.append(aspect_ratio) return aspect_ratios def _compute_aspect_ratios_subset_dataset(dataset, indices=None): if indices is None: indices = range(len(dataset)) ds_indices = [dataset.indices[i] for i in indices] return compute_aspect_ratios(dataset.dataset, ds_indices) def compute_aspect_ratios(dataset, indices=None): if hasattr(dataset, "get_height_and_width"): return _compute_aspect_ratios_custom_dataset(dataset, indices) if isinstance(dataset, torchvision.datasets.CocoDetection): return _compute_aspect_ratios_coco_dataset(dataset, indices) if isinstance(dataset, torchvision.datasets.VOCDetection): return _compute_aspect_ratios_voc_dataset(dataset, indices) if isinstance(dataset, torch.utils.data.Subset): return _compute_aspect_ratios_subset_dataset(dataset, indices) # slow path return _compute_aspect_ratios_slow(dataset, indices) def _quantize(x, bins): bins = copy.deepcopy(bins) bins = sorted(bins) quantized = list(map(lambda y: bisect.bisect_right(bins, y), x)) return quantized def create_aspect_ratio_groups(dataset, k=0): aspect_ratios = compute_aspect_ratios(dataset) bins = (2 ** np.linspace(-1, 1, 2 * k + 1)).tolist() if k > 0 else [1.0] groups = _quantize(aspect_ratios, bins) # count number of elements per group counts = np.unique(groups, return_counts=True)[1] fbins = [0] + bins + [np.inf] print(f"Using {fbins} as bins for aspect ratio quantization") print(f"Count of instances per bin: {counts}") return groups