import os import torch from os.path import join from model_utils import generate_predictions, generate_predictions_bilateral from models import get_FRCNN_model, Bilateral_model from froc_by_pranjal import get_froc_points ####### PARAMETERS TO ADJUST ####### exp_name = 'AIIMS_C3' OUT_FILE = 'ib_results/c3_frcnn.txt' BILATERAL = False dataset_path = 'INBREAST_C3/test' #################################### if os.path.split(OUT_FILE)[0]: os.makedirs(os.path.split(OUT_FILE)[0], exist_ok=True) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") frcnn_model = get_FRCNN_model().to(device) if BILATERAL: model = Bilateral_model(frcnn_model).to(device) MODEL_PATH = f'experiments/{exp_name}/bilateral_models/bilateral_model.pth' model.load_state_dict(torch.load(MODEL_PATH)) else: model = frcnn_model MODEL_PATH = f'experiments/{exp_name}/frcnn_models/frcnn_model.pth' model.load_state_dict(torch.load(MODEL_PATH)) test_path = join('../bilateral_new', 'MammoDatasets',dataset_path) def get_inbreast_dict(test_path, corr_file): extract_file = lambda x: x[x.find('test/')+5:] corr_dict = {extract_file(line.split()[0]):extract_file(line.split()[1]) for line in open(corr_file).readlines()} corr_dict = {join(test_path,k):join(test_path,v) for k,v in corr_dict.items()} return corr_dict if BILATERAL: pred_dir = f'preds_bilateral_{exp_name}' generate_predictions_bilateral(model,device,test_path, get_inbreast_dict(test_path, '../bilateral_new/corr_lists/Inbreast_final_correspondence_list.txt'),'inbreast',pred_dir) else: pred_dir = f'preds_frcnn_{exp_name}' generate_predictions(model, device, test_path, preds_folder = pred_dir) file = open(OUT_FILE, 'a') file.writelines(f'{exp_name} FROC Score:\n') senses, fps = get_froc_points(pred_dir, root_fol= test_path) for s,f in zip(senses, fps): file.writelines(f'Sensitivty at {f}: {s}\n') file.close()