|
|
|
__author__ = 'ZFTurbo: https://kaggle.com/zfturbo' |
|
|
|
""" |
|
Method described in: |
|
CAD: Scale Invariant Framework for Real-Time Object Detection |
|
http://openaccess.thecvf.com/content_ICCV_2017_workshops/papers/w14/Zhou_CAD_Scale_Invariant_ICCV_2017_paper.pdf |
|
""" |
|
|
|
import warnings |
|
import numpy as np |
|
from numba import jit |
|
|
|
|
|
@jit(nopython=True) |
|
def bb_intersection_over_union(A, B): |
|
xA = max(A[0], B[0]) |
|
yA = max(A[1], B[1]) |
|
xB = min(A[2], B[2]) |
|
yB = min(A[3], B[3]) |
|
|
|
|
|
interArea = max(0, xB - xA) * max(0, yB - yA) |
|
|
|
if interArea == 0: |
|
return 0.0 |
|
|
|
|
|
boxAArea = (A[2] - A[0]) * (A[3] - A[1]) |
|
boxBArea = (B[2] - B[0]) * (B[3] - B[1]) |
|
|
|
iou = interArea / float(boxAArea + boxBArea - interArea) |
|
return iou |
|
|
|
|
|
def prefilter_boxes(boxes, scores, labels, weights, thr): |
|
|
|
new_boxes = dict() |
|
for t in range(len(boxes)): |
|
|
|
if len(boxes[t]) != len(scores[t]): |
|
print('Error. Length of boxes arrays not equal to length of scores array: {} != {}'.format(len(boxes[t]), |
|
len(scores[t]))) |
|
exit() |
|
|
|
if len(boxes[t]) != len(labels[t]): |
|
print('Error. Length of boxes arrays not equal to length of labels array: {} != {}'.format(len(boxes[t]), |
|
len(labels[t]))) |
|
exit() |
|
|
|
for j in range(len(boxes[t])): |
|
score = scores[t][j] |
|
if score < thr: |
|
continue |
|
label = int(labels[t][j]) |
|
box_part = boxes[t][j] |
|
x1 = float(box_part[0]) |
|
y1 = float(box_part[1]) |
|
x2 = float(box_part[2]) |
|
y2 = float(box_part[3]) |
|
|
|
|
|
if x2 < x1: |
|
warnings.warn('X2 < X1 value in box. Swap them.') |
|
x1, x2 = x2, x1 |
|
if y2 < y1: |
|
warnings.warn('Y2 < Y1 value in box. Swap them.') |
|
y1, y2 = y2, y1 |
|
if x1 < 0: |
|
warnings.warn('X1 < 0 in box. Set it to 0.') |
|
x1 = 0 |
|
if x1 > 1: |
|
warnings.warn('X1 > 1 in box. Set it to 1. Check that you normalize boxes in [0, 1] range.') |
|
x1 = 1 |
|
if x2 < 0: |
|
warnings.warn('X2 < 0 in box. Set it to 0.') |
|
x2 = 0 |
|
if x2 > 1: |
|
warnings.warn('X2 > 1 in box. Set it to 1. Check that you normalize boxes in [0, 1] range.') |
|
x2 = 1 |
|
if y1 < 0: |
|
warnings.warn('Y1 < 0 in box. Set it to 0.') |
|
y1 = 0 |
|
if y1 > 1: |
|
warnings.warn('Y1 > 1 in box. Set it to 1. Check that you normalize boxes in [0, 1] range.') |
|
y1 = 1 |
|
if y2 < 0: |
|
warnings.warn('Y2 < 0 in box. Set it to 0.') |
|
y2 = 0 |
|
if y2 > 1: |
|
warnings.warn('Y2 > 1 in box. Set it to 1. Check that you normalize boxes in [0, 1] range.') |
|
y2 = 1 |
|
if (x2 - x1) * (y2 - y1) == 0.0: |
|
warnings.warn("Zero area box skipped: {}.".format(box_part)) |
|
continue |
|
|
|
b = [int(label), float(score) * weights[t], x1, y1, x2, y2] |
|
if label not in new_boxes: |
|
new_boxes[label] = [] |
|
new_boxes[label].append(b) |
|
|
|
|
|
for k in new_boxes: |
|
current_boxes = np.array(new_boxes[k]) |
|
new_boxes[k] = current_boxes[current_boxes[:, 1].argsort()[::-1]] |
|
|
|
return new_boxes |
|
|
|
|
|
def get_weighted_box(boxes): |
|
""" |
|
Create weighted box for set of boxes |
|
:param boxes: set of boxes to fuse |
|
:return: weighted box |
|
""" |
|
|
|
box = np.zeros(6, dtype=np.float32) |
|
best_box = boxes[0] |
|
conf = 0 |
|
for b in boxes: |
|
iou = bb_intersection_over_union(b[2:], best_box[2:]) |
|
weight = b[1] * iou |
|
box[2:] += (weight * b[2:]) |
|
conf += weight |
|
box[0] = best_box[0] |
|
box[1] = best_box[1] |
|
box[2:] /= conf |
|
return box |
|
|
|
|
|
def find_matching_box(boxes_list, new_box, match_iou): |
|
best_iou = match_iou |
|
best_index = -1 |
|
for i in range(len(boxes_list)): |
|
box = boxes_list[i] |
|
if box[0] != new_box[0]: |
|
continue |
|
iou = bb_intersection_over_union(box[2:], new_box[2:]) |
|
if iou > best_iou: |
|
best_index = i |
|
best_iou = iou |
|
|
|
return best_index, best_iou |
|
|
|
|
|
def non_maximum_weighted(boxes_list, scores_list, labels_list, weights=None, iou_thr=0.55, skip_box_thr=0.0): |
|
''' |
|
:param boxes_list: list of boxes predictions from each model, each box is 4 numbers. |
|
It has 3 dimensions (models_number, model_preds, 4) |
|
Order of boxes: x1, y1, x2, y2. We expect float normalized coordinates [0; 1] |
|
:param scores_list: list of scores for each model |
|
:param labels_list: list of labels for each model |
|
:param weights: list of weights for each model. Default: None, which means weight == 1 for each model |
|
:param iou_thr: IoU value for boxes to be a match |
|
:param skip_box_thr: exclude boxes with score lower than this variable |
|
|
|
:return: boxes: boxes coordinates (Order of boxes: x1, y1, x2, y2). |
|
:return: scores: confidence scores |
|
:return: labels: boxes labels |
|
''' |
|
|
|
if weights is None: |
|
weights = np.ones(len(boxes_list)) |
|
if len(weights) != len(boxes_list): |
|
print('Warning: incorrect number of weights {}. Must be: {}. Set weights equal to 1.'.format(len(weights), len(boxes_list))) |
|
weights = np.ones(len(boxes_list)) |
|
weights = np.array(weights) / max(weights) |
|
|
|
|
|
|
|
filtered_boxes = prefilter_boxes(boxes_list, scores_list, labels_list, weights, skip_box_thr) |
|
if len(filtered_boxes) == 0: |
|
return np.zeros((0, 4)), np.zeros((0,)), np.zeros((0,)) |
|
|
|
overall_boxes = [] |
|
for label in filtered_boxes: |
|
boxes = filtered_boxes[label] |
|
new_boxes = [] |
|
main_boxes = [] |
|
|
|
|
|
for j in range(0, len(boxes)): |
|
index, best_iou = find_matching_box(main_boxes, boxes[j], iou_thr) |
|
if index != -1: |
|
new_boxes[index].append(boxes[j].copy()) |
|
else: |
|
new_boxes.append([boxes[j].copy()]) |
|
main_boxes.append(boxes[j].copy()) |
|
|
|
weighted_boxes = [] |
|
for j in range(0, len(new_boxes)): |
|
box = get_weighted_box(new_boxes[j]) |
|
weighted_boxes.append(box.copy()) |
|
|
|
overall_boxes.append(np.array(weighted_boxes)) |
|
|
|
overall_boxes = np.concatenate(overall_boxes, axis=0) |
|
overall_boxes = overall_boxes[overall_boxes[:, 1].argsort()[::-1]] |
|
boxes = overall_boxes[:, 2:] |
|
scores = overall_boxes[:, 1] |
|
labels = overall_boxes[:, 0] |
|
return boxes, scores, labels |
|
|