Spaces:
Build error
Build error
| from typing import List, Tuple, Dict, Optional | |
| import torch | |
| import torchvision | |
| from torch import nn, Tensor | |
| from torchvision.transforms import functional as F | |
| from torchvision.transforms import transforms as T | |
| def _flip_coco_person_keypoints(kps, width): | |
| flip_inds = [0, 2, 1, 4, 3, 6, 5, 8, 7, 10, 9, 12, 11, 14, 13, 16, 15] | |
| flipped_data = kps[:, flip_inds] | |
| flipped_data[..., 0] = width - flipped_data[..., 0] | |
| # Maintain COCO convention that if visibility == 0, then x, y = 0 | |
| inds = flipped_data[..., 2] == 0 | |
| flipped_data[inds] = 0 | |
| return flipped_data | |
| class Compose: | |
| def __init__(self, transforms): | |
| self.transforms = transforms | |
| def __call__(self, image, target): | |
| for t in self.transforms: | |
| image, target = t(image, target) | |
| return image, target | |
| class RandomHorizontalFlip(T.RandomHorizontalFlip): | |
| def forward( | |
| self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
| ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
| if torch.rand(1) < self.p: | |
| image = F.hflip(image) | |
| if target is not None: | |
| width, _ = F.get_image_size(image) | |
| target["boxes"][:, [0, 2]] = width - target["boxes"][:, [2, 0]] | |
| if "masks" in target: | |
| target["masks"] = target["masks"].flip(-1) | |
| if "keypoints" in target: | |
| keypoints = target["keypoints"] | |
| keypoints = _flip_coco_person_keypoints(keypoints, width) | |
| target["keypoints"] = keypoints | |
| return image, target | |
| class ToTensor(nn.Module): | |
| def forward( | |
| self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
| ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
| image = F.pil_to_tensor(image) | |
| image = F.convert_image_dtype(image) | |
| return image, target | |
| class PILToTensor(nn.Module): | |
| def forward( | |
| self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
| ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
| image = F.pil_to_tensor(image) | |
| return image, target | |
| class ConvertImageDtype(nn.Module): | |
| def __init__(self, dtype: torch.dtype) -> None: | |
| super().__init__() | |
| self.dtype = dtype | |
| def forward( | |
| self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
| ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
| image = F.convert_image_dtype(image, self.dtype) | |
| return image, target | |
| class RandomIoUCrop(nn.Module): | |
| def __init__( | |
| self, | |
| min_scale: float = 0.3, | |
| max_scale: float = 1.0, | |
| min_aspect_ratio: float = 0.5, | |
| max_aspect_ratio: float = 2.0, | |
| sampler_options: Optional[List[float]] = None, | |
| trials: int = 40, | |
| ): | |
| super().__init__() | |
| # Configuration similar to https://github.com/weiliu89/caffe/blob/ssd/examples/ssd/ssd_coco.py#L89-L174 | |
| self.min_scale = min_scale | |
| self.max_scale = max_scale | |
| self.min_aspect_ratio = min_aspect_ratio | |
| self.max_aspect_ratio = max_aspect_ratio | |
| if sampler_options is None: | |
| sampler_options = [0.0, 0.1, 0.3, 0.5, 0.7, 0.9, 1.0] | |
| self.options = sampler_options | |
| self.trials = trials | |
| def forward( | |
| self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
| ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
| if target is None: | |
| raise ValueError("The targets can't be None for this transform.") | |
| if isinstance(image, torch.Tensor): | |
| if image.ndimension() not in {2, 3}: | |
| raise ValueError(f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions.") | |
| elif image.ndimension() == 2: | |
| image = image.unsqueeze(0) | |
| orig_w, orig_h = F.get_image_size(image) | |
| while True: | |
| # sample an option | |
| idx = int(torch.randint(low=0, high=len(self.options), size=(1,))) | |
| min_jaccard_overlap = self.options[idx] | |
| if min_jaccard_overlap >= 1.0: # a value larger than 1 encodes the leave as-is option | |
| return image, target | |
| for _ in range(self.trials): | |
| # check the aspect ratio limitations | |
| r = self.min_scale + (self.max_scale - self.min_scale) * torch.rand(2) | |
| new_w = int(orig_w * r[0]) | |
| new_h = int(orig_h * r[1]) | |
| aspect_ratio = new_w / new_h | |
| if not (self.min_aspect_ratio <= aspect_ratio <= self.max_aspect_ratio): | |
| continue | |
| # check for 0 area crops | |
| r = torch.rand(2) | |
| left = int((orig_w - new_w) * r[0]) | |
| top = int((orig_h - new_h) * r[1]) | |
| right = left + new_w | |
| bottom = top + new_h | |
| if left == right or top == bottom: | |
| continue | |
| # check for any valid boxes with centers within the crop area | |
| cx = 0.5 * (target["boxes"][:, 0] + target["boxes"][:, 2]) | |
| cy = 0.5 * (target["boxes"][:, 1] + target["boxes"][:, 3]) | |
| is_within_crop_area = (left < cx) & (cx < right) & (top < cy) & (cy < bottom) | |
| if not is_within_crop_area.any(): | |
| continue | |
| # check at least 1 box with jaccard limitations | |
| boxes = target["boxes"][is_within_crop_area] | |
| ious = torchvision.ops.boxes.box_iou( | |
| boxes, torch.tensor([[left, top, right, bottom]], dtype=boxes.dtype, device=boxes.device) | |
| ) | |
| if ious.max() < min_jaccard_overlap: | |
| continue | |
| # keep only valid boxes and perform cropping | |
| target["boxes"] = boxes | |
| target["labels"] = target["labels"][is_within_crop_area] | |
| target["boxes"][:, 0::2] -= left | |
| target["boxes"][:, 1::2] -= top | |
| target["boxes"][:, 0::2].clamp_(min=0, max=new_w) | |
| target["boxes"][:, 1::2].clamp_(min=0, max=new_h) | |
| image = F.crop(image, top, left, new_h, new_w) | |
| return image, target | |
| class RandomZoomOut(nn.Module): | |
| def __init__( | |
| self, fill: Optional[List[float]] = None, side_range: Tuple[float, float] = (1.0, 4.0), p: float = 0.5 | |
| ): | |
| super().__init__() | |
| if fill is None: | |
| fill = [0.0, 0.0, 0.0] | |
| self.fill = fill | |
| self.side_range = side_range | |
| if side_range[0] < 1.0 or side_range[0] > side_range[1]: | |
| raise ValueError(f"Invalid canvas side range provided {side_range}.") | |
| self.p = p | |
| def _get_fill_value(self, is_pil): | |
| # type: (bool) -> int | |
| # We fake the type to make it work on JIT | |
| return tuple(int(x) for x in self.fill) if is_pil else 0 | |
| def forward( | |
| self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
| ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
| if isinstance(image, torch.Tensor): | |
| if image.ndimension() not in {2, 3}: | |
| raise ValueError(f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions.") | |
| elif image.ndimension() == 2: | |
| image = image.unsqueeze(0) | |
| if torch.rand(1) < self.p: | |
| return image, target | |
| orig_w, orig_h = F.get_image_size(image) | |
| r = self.side_range[0] + torch.rand(1) * (self.side_range[1] - self.side_range[0]) | |
| canvas_width = int(orig_w * r) | |
| canvas_height = int(orig_h * r) | |
| r = torch.rand(2) | |
| left = int((canvas_width - orig_w) * r[0]) | |
| top = int((canvas_height - orig_h) * r[1]) | |
| right = canvas_width - (left + orig_w) | |
| bottom = canvas_height - (top + orig_h) | |
| if torch.jit.is_scripting(): | |
| fill = 0 | |
| else: | |
| fill = self._get_fill_value(F._is_pil_image(image)) | |
| image = F.pad(image, [left, top, right, bottom], fill=fill) | |
| if isinstance(image, torch.Tensor): | |
| v = torch.tensor(self.fill, device=image.device, dtype=image.dtype).view(-1, 1, 1) | |
| image[..., :top, :] = image[..., :, :left] = image[..., (top + orig_h) :, :] = image[ | |
| ..., :, (left + orig_w) : | |
| ] = v | |
| if target is not None: | |
| target["boxes"][:, 0::2] += left | |
| target["boxes"][:, 1::2] += top | |
| return image, target | |
| class RandomPhotometricDistort(nn.Module): | |
| def __init__( | |
| self, | |
| contrast: Tuple[float] = (0.5, 1.5), | |
| saturation: Tuple[float] = (0.5, 1.5), | |
| hue: Tuple[float] = (-0.05, 0.05), | |
| brightness: Tuple[float] = (0.875, 1.125), | |
| p: float = 0.5, | |
| ): | |
| super().__init__() | |
| self._brightness = T.ColorJitter(brightness=brightness) | |
| self._contrast = T.ColorJitter(contrast=contrast) | |
| self._hue = T.ColorJitter(hue=hue) | |
| self._saturation = T.ColorJitter(saturation=saturation) | |
| self.p = p | |
| def forward( | |
| self, image: Tensor, target: Optional[Dict[str, Tensor]] = None | |
| ) -> Tuple[Tensor, Optional[Dict[str, Tensor]]]: | |
| if isinstance(image, torch.Tensor): | |
| if image.ndimension() not in {2, 3}: | |
| raise ValueError(f"image should be 2/3 dimensional. Got {image.ndimension()} dimensions.") | |
| elif image.ndimension() == 2: | |
| image = image.unsqueeze(0) | |
| r = torch.rand(7) | |
| if r[0] < self.p: | |
| image = self._brightness(image) | |
| contrast_before = r[1] < 0.5 | |
| if contrast_before: | |
| if r[2] < self.p: | |
| image = self._contrast(image) | |
| if r[3] < self.p: | |
| image = self._saturation(image) | |
| if r[4] < self.p: | |
| image = self._hue(image) | |
| if not contrast_before: | |
| if r[5] < self.p: | |
| image = self._contrast(image) | |
| if r[6] < self.p: | |
| channels = F.get_image_num_channels(image) | |
| permutation = torch.randperm(channels) | |
| is_pil = F._is_pil_image(image) | |
| if is_pil: | |
| image = F.pil_to_tensor(image) | |
| image = F.convert_image_dtype(image) | |
| image = image[..., permutation, :, :] | |
| if is_pil: | |
| image = F.to_pil_image(image) | |
| return image, target | |