|
import bisect |
|
import copy |
|
import math |
|
from collections import defaultdict |
|
from itertools import repeat, chain |
|
|
|
import numpy as np |
|
import torch |
|
import torch.utils.data |
|
import torchvision |
|
from PIL import Image |
|
from torch.utils.data.sampler import BatchSampler, Sampler |
|
from torch.utils.model_zoo import tqdm |
|
|
|
|
|
def _repeat_to_at_least(iterable, n): |
|
repeat_times = math.ceil(n / len(iterable)) |
|
repeated = chain.from_iterable(repeat(iterable, repeat_times)) |
|
return list(repeated) |
|
|
|
|
|
class GroupedBatchSampler(BatchSampler): |
|
""" |
|
Wraps another sampler to yield a mini-batch of indices. |
|
It enforces that the batch only contain elements from the same group. |
|
It also tries to provide mini-batches which follows an ordering which is |
|
as close as possible to the ordering from the original sampler. |
|
Args: |
|
sampler (Sampler): Base sampler. |
|
group_ids (list[int]): If the sampler produces indices in range [0, N), |
|
`group_ids` must be a list of `N` ints which contains the group id of each sample. |
|
The group ids must be a continuous set of integers starting from |
|
0, i.e. they must be in the range [0, num_groups). |
|
batch_size (int): Size of mini-batch. |
|
""" |
|
|
|
def __init__(self, sampler, group_ids, batch_size): |
|
if not isinstance(sampler, Sampler): |
|
raise ValueError(f"sampler should be an instance of torch.utils.data.Sampler, but got sampler={sampler}") |
|
self.sampler = sampler |
|
self.group_ids = group_ids |
|
self.batch_size = batch_size |
|
|
|
def __iter__(self): |
|
buffer_per_group = defaultdict(list) |
|
samples_per_group = defaultdict(list) |
|
|
|
num_batches = 0 |
|
for idx in self.sampler: |
|
group_id = self.group_ids[idx] |
|
buffer_per_group[group_id].append(idx) |
|
samples_per_group[group_id].append(idx) |
|
if len(buffer_per_group[group_id]) == self.batch_size: |
|
yield buffer_per_group[group_id] |
|
num_batches += 1 |
|
del buffer_per_group[group_id] |
|
assert len(buffer_per_group[group_id]) < self.batch_size |
|
|
|
|
|
|
|
|
|
|
|
expected_num_batches = len(self) |
|
num_remaining = expected_num_batches - num_batches |
|
if num_remaining > 0: |
|
|
|
|
|
for group_id, _ in sorted(buffer_per_group.items(), key=lambda x: len(x[1]), reverse=True): |
|
remaining = self.batch_size - len(buffer_per_group[group_id]) |
|
samples_from_group_id = _repeat_to_at_least(samples_per_group[group_id], remaining) |
|
buffer_per_group[group_id].extend(samples_from_group_id[:remaining]) |
|
assert len(buffer_per_group[group_id]) == self.batch_size |
|
yield buffer_per_group[group_id] |
|
num_remaining -= 1 |
|
if num_remaining == 0: |
|
break |
|
assert num_remaining == 0 |
|
|
|
def __len__(self): |
|
return len(self.sampler) // self.batch_size |
|
|
|
|
|
def _compute_aspect_ratios_slow(dataset, indices=None): |
|
print( |
|
"Your dataset doesn't support the fast path for " |
|
"computing the aspect ratios, so will iterate over " |
|
"the full dataset and load every image instead. " |
|
"This might take some time..." |
|
) |
|
if indices is None: |
|
indices = range(len(dataset)) |
|
|
|
class SubsetSampler(Sampler): |
|
def __init__(self, indices): |
|
self.indices = indices |
|
|
|
def __iter__(self): |
|
return iter(self.indices) |
|
|
|
def __len__(self): |
|
return len(self.indices) |
|
|
|
sampler = SubsetSampler(indices) |
|
data_loader = torch.utils.data.DataLoader( |
|
dataset, |
|
batch_size=1, |
|
sampler=sampler, |
|
num_workers=14, |
|
collate_fn=lambda x: x[0], |
|
) |
|
aspect_ratios = [] |
|
with tqdm(total=len(dataset)) as pbar: |
|
for _i, (img, _) in enumerate(data_loader): |
|
pbar.update(1) |
|
height, width = img.shape[-2:] |
|
aspect_ratio = float(width) / float(height) |
|
aspect_ratios.append(aspect_ratio) |
|
return aspect_ratios |
|
|
|
|
|
def _compute_aspect_ratios_custom_dataset(dataset, indices=None): |
|
if indices is None: |
|
indices = range(len(dataset)) |
|
aspect_ratios = [] |
|
for i in indices: |
|
height, width = dataset.get_height_and_width(i) |
|
aspect_ratio = float(width) / float(height) |
|
aspect_ratios.append(aspect_ratio) |
|
return aspect_ratios |
|
|
|
|
|
def _compute_aspect_ratios_coco_dataset(dataset, indices=None): |
|
if indices is None: |
|
indices = range(len(dataset)) |
|
aspect_ratios = [] |
|
for i in indices: |
|
img_info = dataset.coco.imgs[dataset.ids[i]] |
|
aspect_ratio = float(img_info["width"]) / float(img_info["height"]) |
|
aspect_ratios.append(aspect_ratio) |
|
return aspect_ratios |
|
|
|
|
|
def _compute_aspect_ratios_voc_dataset(dataset, indices=None): |
|
if indices is None: |
|
indices = range(len(dataset)) |
|
aspect_ratios = [] |
|
for i in indices: |
|
|
|
width, height = Image.open(dataset.images[i]).size |
|
aspect_ratio = float(width) / float(height) |
|
aspect_ratios.append(aspect_ratio) |
|
return aspect_ratios |
|
|
|
|
|
def _compute_aspect_ratios_subset_dataset(dataset, indices=None): |
|
if indices is None: |
|
indices = range(len(dataset)) |
|
|
|
ds_indices = [dataset.indices[i] for i in indices] |
|
return compute_aspect_ratios(dataset.dataset, ds_indices) |
|
|
|
|
|
def compute_aspect_ratios(dataset, indices=None): |
|
if hasattr(dataset, "get_height_and_width"): |
|
return _compute_aspect_ratios_custom_dataset(dataset, indices) |
|
|
|
if isinstance(dataset, torchvision.datasets.CocoDetection): |
|
return _compute_aspect_ratios_coco_dataset(dataset, indices) |
|
|
|
if isinstance(dataset, torchvision.datasets.VOCDetection): |
|
return _compute_aspect_ratios_voc_dataset(dataset, indices) |
|
|
|
if isinstance(dataset, torch.utils.data.Subset): |
|
return _compute_aspect_ratios_subset_dataset(dataset, indices) |
|
|
|
|
|
return _compute_aspect_ratios_slow(dataset, indices) |
|
|
|
|
|
def _quantize(x, bins): |
|
bins = copy.deepcopy(bins) |
|
bins = sorted(bins) |
|
quantized = list(map(lambda y: bisect.bisect_right(bins, y), x)) |
|
return quantized |
|
|
|
|
|
def create_aspect_ratio_groups(dataset, k=0): |
|
aspect_ratios = compute_aspect_ratios(dataset) |
|
bins = (2 ** np.linspace(-1, 1, 2 * k + 1)).tolist() if k > 0 else [1.0] |
|
groups = _quantize(aspect_ratios, bins) |
|
|
|
counts = np.unique(groups, return_counts=True)[1] |
|
fbins = [0] + bins + [np.inf] |
|
print(f"Using {fbins} as bins for aspect ratio quantization") |
|
print(f"Count of instances per bin: {counts}") |
|
return groups |
|
|