File size: 5,653 Bytes
970a7a2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import glob
import torch
from os.path import join
import numpy as np
from froc_by_pranjal import file_to_bbox, calc_froc_from_dict, pretty_print_fps
import sys
from ensemble_boxes import *
import json
import pickle



get_file_id = lambda x: x.split('_')[1]
get_acr_cat = lambda x: '0' if x not in acr_cat else acr_cat[x]
cat_to_idx = {'a':1,'b':2,'c':3,'d':4}


def get_image_dict(dataset_paths, labels = ['mal','ben'], allowed = [], USE_ACR = False, acr_cat = None, mp_dict = None):
    image_dict = dict()
    if allowed == []:
        allowed = [i for i in range(len(dataset_paths))]
    for label in labels:
        images = list(set.intersection(*map(set, [os.listdir(dset.format(label)) for dset in dataset_paths])))
        for image in images:
            if USE_ACR:
                acr = get_acr_cat(get_file_id(image))
            # print(acr, image)
            key = image[:-4]
            gts = []
            preds = []
            for i,dset in enumerate(dataset_paths):
                if i not in allowed:
                    continue
                if USE_ACR:
                    if dset.find('AIIMS_C')!=-1:
                        if acr == '0': continue
                        if dset.find(f'AIIMS_C{cat_to_idx[acr]}') == -1:
                            continue
                        # Now choose dset to be the acr category one
                        dset = dset.replace('/test',f'/test_{acr}')
                # print('ds',dset)
                pred_file = join(dset.format(label), key+'.txt')
                gt_file = join(os.path.split(dset.format(label))[0],'gt', key+'.txt')
                if label == 'mal':
                    gts.append(file_to_bbox(gt_file))
                else:
                    gts.append([])

                # TODO: Note this
                flag = False
                for mp in mp_dict:
                    if dataset_paths[i].find(mp) != -1:
                        preds.append(mp_dict[mp](file_to_bbox(pred_file)))
                        flag = True
                        break
                if not flag:
                    preds.append(file_to_bbox(pred_file))

            # Ensure all gts are same
            gt = gts[0]
            for g in gts[1:]:
                assert g == gt
                gt = g
            
            # Flatten Preds
            preds = [np.array(p) for p in preds]
            preds = [np.array([[0.,0.,0.,0.,0.]]) if pred.shape==(0,) else pred for pred in preds]
            preds = [np.vstack((p, np.zeros((100 - len(p), 5)))) for p in preds]
            image_dict[key] = dict()
            image_dict[key]['gt'] = gts[0]
            image_dict[key]['preds'] = preds
    return image_dict


def apply_merge(image_dict, METHOD = 'wbf', weights = None, conf_type = None):
    FACTOR = 5000
    fusion_func = weighted_boxes_fusion if METHOD == 'wbf' else non_maximum_weighted
    for key in image_dict:
        preds = np.array(image_dict[key]['preds'])
        if len(preds) != 0:
            boxes_list = [pred[:,1:]/FACTOR for pred in preds]
            scores_list = [pred[:,0] for pred in preds]
            labels = [[0. for _ in range(len(p))] for p in preds]
            if weights is None:
                weights = [1 for _ in range(len(preds))]
            if METHOD == 'wbf' and conf_type is not None:
                boxes,scores,_ = fusion_func(boxes_list, scores_list, labels, weights = weights,iou_thr  = 0.5, conf_type = conf_type)
            else:
                boxes,scores,_ = fusion_func(boxes_list, scores_list, labels, weights = weights,iou_thr  = 0.5,)
            preds_t = [[scores[i],FACTOR*boxes[i][0],FACTOR*boxes[i][1],FACTOR*boxes[i][2],FACTOR*boxes[i][3]] for i in range(len(boxes))]
            image_dict[key]['preds'] = preds_t
    return image_dict

def manipulate_preds(preds):
    return preds



def manipulate_preds_4(preds):
    return preds

tot = 0
def manipulate_preds_t1(preds): #return manipulate_preds(preds)
    preds  = list(filter(lambda x: x[0]>0.6,preds))

    return preds

def manipulate_preds_t2(preds): return manipulate_preds_t1(preds)


if __name__ == '__main__':
    USE_ACR = False
    dataset_paths = [
        'MammoDatasets/AIIMS_C1/test/{0}/preds_frcnn_AIIMS_C1',
        'MammoDatasets/AIIMS_C2/test/{0}/preds_frcnn_AIIMS_C2',
        'MammoDatasets/AIIMS_C3/test/{0}/preds_frcnn_AIIMS_C3',
        'MammoDatasets/AIIMS_C4/test/{0}/preds_frcnn_AIIMS_C4',
        'MammoDatasets/AIIMS_highres_reliable/test/{0}/preds_bilateral_BILATERAL',
        'MammoDatasets/AIIMS_highres_reliable/test/{0}/preds_frcnn_16',
    ]


    st = int(sys.argv[1])
    end = len(dataset_paths) - int(sys.argv[2])
    allowed = [i for i in range(st,end)]
    allowed = [0,1,2,3,4,5]

    OUT_FILE = 'contrast_frcnn.txt'
    if OUT_FILE is not None:
        fol = os.path.split(OUT_FILE)[0]
        if fol != '':
            os.makedirs(fol, exist_ok=True)
    
    acr_cat = json.load(open('aiims_categories.json','r'))
    print(allowed)

    mp_dict = {
        'preds_frcnn_AIIMS_C3': manipulate_preds,
        'preds_frcnn_AIIMS_C4': manipulate_preds_4,
        'AIIMS_T2': manipulate_preds_t2,
        'AIIMS_T1': manipulate_preds_t1,
    }

    image_dict = get_image_dict(dataset_paths, allowed = allowed, USE_ACR = USE_ACR, acr_cat = acr_cat, mp_dict = mp_dict)
    
    image_dict = apply_merge(image_dict, METHOD = 'nms') # or wbf

    if OUT_FILE:
        pickle.dump(image_dict, open(OUT_FILE.replace('.txt','.pkl'),'wb'))
        senses, fps = calc_froc_from_dict(image_dict, fps_req = [0.025,0.05,0.1,0.15,0.2,0.3,1.],save_to=OUT_FILE)
    pretty_print_fps(senses, fps)